5G推動(dòng)多個(gè)行業(yè)中的毫米波技術(shù)
發(fā)布時(shí)間:2020-07-21 來源:Keith Benson 責(zé)任編輯:wenwei
【導(dǎo)讀】為了解決問題并提高性能,當(dāng)今世界的技術(shù)所采用的頻率不斷提高。毫米波(mmWave)頻率為應(yīng)對(duì)通信和防務(wù)等眾多行業(yè)中的嚴(yán)苛要求帶來了希望。5G通信系統(tǒng)受益于防務(wù)公司多年的研究成果,雖然它們針對(duì)的應(yīng)用不同,但需求類似。在電信鏈路中需要更高的數(shù)據(jù)速率,不斷超出現(xiàn)有技術(shù)能力,其解決方案正在向28 GHz和39 GHz發(fā)展。
不斷增加的高頻IC開發(fā)導(dǎo)致軍用設(shè)施在戰(zhàn)場(chǎng)上需要應(yīng)對(duì)的技術(shù)量增加。高頻雷達(dá)分辨率的提高可以更清晰地解析目標(biāo),使防務(wù)應(yīng)用(例如救助滯留海上的機(jī)組人員時(shí))受益。此外,許多專為電信設(shè)計(jì)的IC必須具有低成本并且適合大規(guī)模生產(chǎn),以便更易于部署。所有這些活動(dòng)的一個(gè)副產(chǎn)品是需要可以驗(yàn)證解決方案在整個(gè)應(yīng)用領(lǐng)域中能正常工作的測(cè)試儀器。
本文將簡(jiǎn)要介紹共享通用技術(shù)將使哪些行業(yè)受益或受到影響。分析了IC供應(yīng)鏈以及IC供應(yīng)鏈如何應(yīng)對(duì)這些新需求。本文還將展示毫米波頻率如何幫助解決當(dāng)今的挑戰(zhàn),然后舉例說明ADI技術(shù)如何使之成為可能。
無線電子設(shè)備交織的世界
為某個(gè)不同行業(yè)應(yīng)用創(chuàng)建的技術(shù)通常會(huì)使多個(gè)行業(yè)受益。微波爐被公認(rèn)為是一位雷達(dá)工程師的功勞,他在測(cè)試過程中發(fā)現(xiàn)自己的午餐被融化了。如今,我們看到類似情況正在發(fā)生,5G電信正試圖實(shí)現(xiàn)防務(wù)行業(yè)利用相控陣天線所帶來的益處。將來,防務(wù)行業(yè)很可能又會(huì)反過來實(shí)現(xiàn)5G進(jìn)步所帶來的新技術(shù),從而建立起良性循環(huán)。
同樣,衛(wèi)星通信正在經(jīng)歷一場(chǎng)技術(shù)變革,從地球同步赤道軌道(GEO)或地球靜止軌道衛(wèi)星轉(zhuǎn)向探索近地軌道(LEO)衛(wèi)星,后者將能提供更高的數(shù)據(jù)吞吐量和對(duì)地球更好的覆蓋率。其理念是,在給定網(wǎng)絡(luò)中從繞地球運(yùn)行的一顆或幾顆GEO衛(wèi)星轉(zhuǎn)為數(shù)千顆(LEO)衛(wèi)星。有許多運(yùn)營(yíng)商正試圖創(chuàng)建面向?qū)拵Щヂ?lián)網(wǎng)的全新LEO衛(wèi)星群,而許多爭(zhēng)相提供衛(wèi)星的公司正是同一批防務(wù)公司,它們擁有完備GEO衛(wèi)星,而這些衛(wèi)星對(duì)軍用監(jiān)控和通信來說至關(guān)重要。
這種從為不同目的而創(chuàng)造的技術(shù)中受益的循環(huán)已經(jīng)出現(xiàn)在各個(gè)市場(chǎng)中,并還將持續(xù)數(shù)年?,F(xiàn)在,我們將探討為何毫米波頻率對(duì)防務(wù)和通信都有幫助。
更高頻率助力實(shí)現(xiàn)更高數(shù)據(jù)速率和更寬通信帶寬
在過去20年間,隨著移動(dòng)通信的激增,對(duì)更高數(shù)據(jù)速率的需求不斷增長(zhǎng)。每隔幾年就會(huì)引入一個(gè)新的無線標(biāo)準(zhǔn)來定義新協(xié)議以增加數(shù)據(jù)吞吐量。這些吞吐量的提高通常與更復(fù)雜的調(diào)制方案相關(guān),以便同時(shí)傳輸多個(gè)信息。隨著調(diào)制方案變得更加復(fù)雜,傳輸更多數(shù)據(jù)的能力也在增長(zhǎng)。然而,調(diào)制復(fù)雜度增加到某個(gè)程度就不再能提供顯著的吞吐量改善。故而信號(hào)調(diào)制的常用方法是將其擴(kuò)展到載波頻率附近的一系列頻率上。因此,提高吞吐量的另一種方法是將調(diào)制信號(hào)(FBW)擴(kuò)展到更寬的頻率范圍內(nèi)來增加其帶寬。為了不斷增加可擴(kuò)展信號(hào)的數(shù)量,我們需要增加載波頻率(FC)以使其不低于直流。通過轉(zhuǎn)移到更高頻率以實(shí)現(xiàn)同時(shí)傳輸更多數(shù)據(jù)的能力將應(yīng)用推向了毫米波頻率。
5G對(duì)電子戰(zhàn)有何影響
當(dāng)今的軍事沖突越來越多地以電子方式進(jìn)行對(duì)抗,這引發(fā)了電子戰(zhàn)的構(gòu)想。電子戰(zhàn)的關(guān)鍵組件之一是雷達(dá),只需發(fā)送一個(gè)信號(hào)并等待信號(hào)返回,即可對(duì)雷達(dá)視野范圍進(jìn)行測(cè)繪。雷達(dá)系統(tǒng)已經(jīng)經(jīng)歷了100多年的發(fā)展,其主要優(yōu)勢(shì)是可以檢測(cè)和測(cè)繪人類看不見的目標(biāo)物。這使雷達(dá)操作員比沒有雷達(dá)的對(duì)手擁有更大的優(yōu)勢(shì)。因此,雷達(dá)技術(shù)多年來一直在持續(xù)發(fā)展。如今,我們看到雷達(dá)用在日常天氣預(yù)報(bào)、空中交通管制以及新興應(yīng)用中,例如在汽車行業(yè)中利用雷達(dá)來檢測(cè)汽車與目標(biāo)物之間的距離。采用UHF和VHF頻率的傳統(tǒng)低頻雷達(dá)系統(tǒng)已經(jīng)被應(yīng)用于超長(zhǎng)距離早期探測(cè)雷達(dá)。快速移動(dòng)的飛機(jī)更常在X頻段頻率(8 GHz至12 GHz)運(yùn)行,從而可以受益于更高分辨率和更小尺寸的天線。用于戰(zhàn)斗機(jī)中部署和瞄準(zhǔn)導(dǎo)彈的雷達(dá)系統(tǒng)通常在Ka頻段(33 GHz至37 GHz)運(yùn)行。94 GHz下的制導(dǎo)彈藥和導(dǎo)彈開發(fā)正在不斷增加。雷達(dá)系統(tǒng)轉(zhuǎn)向更高頻率具有諸多優(yōu)勢(shì),我們可以通過查看表征目標(biāo)解析能力的距離分辨率和角度分辨率來了解這些優(yōu)勢(shì)。轉(zhuǎn)向更高頻率的第一個(gè)優(yōu)勢(shì)是實(shí)現(xiàn)給定角度分辨率的天線尺寸會(huì)縮小,該分辨率是小型軍備安裝的關(guān)鍵。從另一個(gè)角度來看,對(duì)于給定天線尺寸,更高頻率下的角度分辨率會(huì)增加。雷達(dá)的距離分辨率與調(diào)制帶寬成正比,如上所述,在更高的頻率下會(huì)提高距離分辨率。因此,由于應(yīng)用要求更高的分辨率,轉(zhuǎn)向更高頻率會(huì)帶來優(yōu)勢(shì)。
圖1. 以載波頻率為中心的調(diào)制帶寬
傳統(tǒng)上,防務(wù)公司的電子戰(zhàn)系統(tǒng)運(yùn)行于2 GHz至18 GHz之間,涵蓋S波段、C波段、X波段和Ku波段的雷達(dá)。隨著威脅的距離增加,進(jìn)行偵聽的電子設(shè)備也將增加,直至最終消除威脅。我們可以看到,工作在28 GHz和39 GHz頻率的5G設(shè)備接近于用于導(dǎo)彈制導(dǎo)的現(xiàn)有Ka頻段。因此,對(duì)電子戰(zhàn)系統(tǒng)的新要求將擴(kuò)展到可覆蓋從24 GHz到44 GHz的5G頻率范圍,并且在這些頻率上將有更多電子手段可考慮用于軍事戰(zhàn)場(chǎng)。通常,電子戰(zhàn)的主要作用是偵聽威脅,然后以電子方式干擾威脅,同時(shí)不被發(fā)現(xiàn)。由于威脅可能來自各種不同的頻率,因此偵聽設(shè)備(后面緊接著的是干擾設(shè)備)需要具備寬工作頻段。
在防務(wù)應(yīng)用中采用多年的關(guān)鍵技術(shù)已經(jīng)成為5G電信的理想技術(shù)。相控陣天線技術(shù)非常適合5G應(yīng)用,它的多個(gè)特性對(duì)防務(wù)行業(yè)也很有價(jià)值。這些關(guān)鍵屬性包括傳輸多個(gè)數(shù)據(jù)流或輻射圖的能力。在防務(wù)應(yīng)用中,這使得戰(zhàn)斗機(jī)能夠一次跟蹤多個(gè)目標(biāo),而在5G電信中,它可以一次將數(shù)據(jù)傳輸給多個(gè)用戶。同樣,防務(wù)應(yīng)用需要可將能量對(duì)準(zhǔn)一個(gè)方向的波束,從而降低被攔截或干擾的可能性。電信能夠更高效地將信息定向發(fā)送給用戶,從而消耗更低的功耗。
幾乎立即完成波束重新定位的能力讓兩種應(yīng)用都能受益。深受電信和防務(wù)行業(yè)青睞的許多其他優(yōu)勢(shì)使該技術(shù)頗具吸引力。
5G對(duì)IC的影響
當(dāng)今世界非常依賴于移動(dòng)通信。支持5G蜂窩基礎(chǔ)設(shè)施的先進(jìn)技術(shù)對(duì)于許多電信設(shè)備提供商及其基于IC的供應(yīng)鏈(如圖2所示)而言,是一個(gè)重要的增長(zhǎng)領(lǐng)域。這一巨大的增長(zhǎng)機(jī)會(huì)催生了數(shù)百萬甚至數(shù)十億美元的投資,以實(shí)現(xiàn)下一代產(chǎn)品。構(gòu)成這些系統(tǒng)的核心元件是通過網(wǎng)絡(luò)路由數(shù)據(jù)的IC。我們可以看到,IC供應(yīng)鏈的各個(gè)方面都在改變和發(fā)展(如圖2所示)。我們看到,從這些產(chǎn)品可用的晶圓制造工藝到最終測(cè)試解決方案,支持這些產(chǎn)品的技術(shù)都發(fā)生了重大的創(chuàng)新。
圖2. 5G IC 供應(yīng)鏈
提供晶圓制造服務(wù)的眾多半導(dǎo)體代工廠為IC創(chuàng)造了基礎(chǔ)材料,并不斷創(chuàng)新。許多代工廠已經(jīng)開發(fā)出新的工藝技術(shù)來參與競(jìng)爭(zhēng)并實(shí)現(xiàn)5G新技術(shù)。這種改進(jìn)的示例之一是轉(zhuǎn)向比電子束光刻更具成本效益的光學(xué)光刻。另一個(gè)優(yōu)勢(shì)是可以將新功能集成到單個(gè)工藝節(jié)點(diǎn)中,以在價(jià)格敏感的市場(chǎng)中參與競(jìng)爭(zhēng)。
隨著新工藝技術(shù)的推出,IC設(shè)計(jì)也在不斷演進(jìn)。通過在單個(gè)工藝節(jié)點(diǎn)中提供新功能,IC設(shè)計(jì)人員能夠?qū)⒛承┕δ芙M合到一個(gè)產(chǎn)品中,或者從核心晶體管中提取比以前更高的性能。這些趨勢(shì)最終導(dǎo)致芯片的集成度提高,并且更易于部署。隨著向毫米波頻率的擴(kuò)展,具有吸引力的還包括能夠利用低成本封裝的優(yōu)勢(shì),使裝配更加容易。毫米波頻率下的傳統(tǒng)防務(wù)裝配方式是芯片-引線互連裝配法,即轉(zhuǎn)換成小型金屬外殼,芯片之間采用引線相互鍵合。這并不是一種大批量裝配方法,并且通常比表面貼裝技術(shù)更貴。過去幾年一直采用此方法的主要原因是尺寸限制。但是,隨著在更小封裝中實(shí)現(xiàn)更高集成度和更高的性能,表面貼裝更具吸引力。
對(duì)于在28 GHz和39 GHz下的相控陣天線及其IC,OTA測(cè)試等測(cè)試解決方案已經(jīng)成為現(xiàn)實(shí)。以前,要測(cè)試相控陣天線,通常需要一個(gè)大的電波暗室,它不僅難以構(gòu)造且價(jià)格昂貴?,F(xiàn)在,這些測(cè)試解決方案變得更為經(jīng)濟(jì)、更小型化并且現(xiàn)成可用,從而導(dǎo)致可以提供完整天線解決方案,而無需花費(fèi)大量投資來測(cè)量最終產(chǎn)品的供應(yīng)商數(shù)量大大增加。相控陣天線已經(jīng)從主要用于防務(wù)公司和大學(xué)的探索性技術(shù)轉(zhuǎn)變?yōu)橹髁骷夹g(shù)。它不僅讓旨在抓住5G機(jī)遇的電信公司能夠利用這一新技術(shù),而且還能更好地防御新興防務(wù)威脅。現(xiàn)在,標(biāo)準(zhǔn)儀器供應(yīng)商提供的精確測(cè)量技術(shù)可以更快地解決經(jīng)驗(yàn)不足的天線工程師之前面臨的挑戰(zhàn)。
這樣一來,業(yè)界便可提供更多的毫米波產(chǎn)品,這些產(chǎn)品既可以部署在通信應(yīng)用中,也可以用于防務(wù)應(yīng)用。通常,用于蜂窩基礎(chǔ)設(shè)施的產(chǎn)品在規(guī)格和功能上與防務(wù)和儀器儀表行業(yè)產(chǎn)品的需求很接近。易于獲取的IC和測(cè)試解決方案的發(fā)展加快了最終產(chǎn)品的上市時(shí)間,這極大地降低了防務(wù)行業(yè)中毫米波頻率出現(xiàn)威脅的等級(jí)。
ADI公司助力多個(gè)行業(yè)體驗(yàn)5G效應(yīng)
除了會(huì)受到影響的儀器儀表和防務(wù)行業(yè)以外,ADI公司還投入巨資開發(fā)5G電信解決方案。面向電信市場(chǎng)的產(chǎn)品往往頻段較窄,因此更易于進(jìn)行性能優(yōu)化。防務(wù)行業(yè)通常需要寬帶寬解決方案,因?yàn)樵谌狈Τ罢J(rèn)知的情況下,威脅可能來自多個(gè)頻率。
用于28 GHz 5G電信基礎(chǔ)設(shè)施中的功率放大器(PA)的示例之一是 HMC863ALC4,它可覆蓋24 GHz至29.5 GHz頻率范圍,并能提供大于0.5 W的RF功率。PA采用一個(gè)小型4 mm × 4 mm表面貼封裝,可產(chǎn)生接近40 dBm的三階交調(diào)點(diǎn)(TOI)。性能曲線如圖3所示。
圖3. HMC863A 測(cè)得的增益 (左) 和 OIP3 (右) 與溫度的關(guān)系
此外,ADI公司還針對(duì)防務(wù)和儀器儀表市場(chǎng)開發(fā)了解決方案,例如可覆蓋20 GHz至44 GHz頻率范圍的 ADPA7005。ADPA7005支持倍頻程范圍工作帶寬,并可在整個(gè)工作頻段內(nèi)提供大于1 W的飽和輸出功率。整個(gè)頻率范圍上的一致增益標(biāo)稱值為15 dB,使其可以輕松集成到完整的系統(tǒng)中。此外,40 dBm以上時(shí)的高TOI是測(cè)量或生成高調(diào)制輸入信號(hào)的理想選擇。TOI和飽和功率的性能曲線如圖4所示。
圖4. ADPA7005測(cè)得的飽和功率(左)和OIP3(右)與溫度的關(guān)系
電信網(wǎng)絡(luò)的發(fā)展已經(jīng)對(duì)周邊產(chǎn)業(yè)產(chǎn)生了影響,該影響將在未來幾年內(nèi)逐漸展現(xiàn)。這種變遷的核心是需要以數(shù)據(jù)形式提供更多信息,這些信息將有可能創(chuàng)造出永遠(yuǎn)不會(huì)對(duì)目標(biāo)進(jìn)行物理攻擊的新武器。當(dāng)今世界的應(yīng)用所采用的頻率正不斷提高,這只是個(gè)開始。
作者
Keith Benson
Keith Benson于2002年畢業(yè)于馬薩諸塞大學(xué)安姆斯特分校,獲電氣工程學(xué)士學(xué)位,2004年畢業(yè)于加州大學(xué)圣塔芭芭拉分校,獲電氣工程碩士學(xué)位。他之前就職于Hittite Microwave,主攻RF無線電子的IC設(shè)計(jì)。然后轉(zhuǎn)向IC設(shè)計(jì)工程師團(tuán)隊(duì)管理,主要負(fù)責(zé)無線通信鏈路。2014年,ADI公司收購(gòu)了Hittite Microwave,Keith成為ADI公司RF/MW放大器和相控陣IC的產(chǎn)品線總監(jiān)。Keith目前擁有3項(xiàng)新穎放大器技術(shù)方面的美國(guó)專利。
推薦閱讀:
特別推薦
- 增強(qiáng)視覺傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場(chǎng)
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡(jiǎn)化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- 利用高性能電壓監(jiān)控器提高工業(yè)功能安全合規(guī)性——第1部分
- 芯耀輝:從傳統(tǒng)IP到IP2.0,AI時(shí)代國(guó)產(chǎn)IP機(jī)遇與挑戰(zhàn)齊飛
- 解決模擬輸入IEC系統(tǒng)保護(hù)問題
- 當(dāng)過壓持續(xù)較長(zhǎng)時(shí)間時(shí),使用開關(guān)浪涌抑制器
- 用于狀態(tài)監(jiān)測(cè)的振動(dòng)傳感器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器