你的位置:首頁(yè) > 互連技術(shù) > 正文

一招解決緊湊電機(jī)控制設(shè)計(jì)問(wèn)題

發(fā)布時(shí)間:2023-01-26 責(zé)任編輯:lina

【導(dǎo)讀】由鋰離子供電的高功率密度、高能效、三相無(wú)刷直流 (BLDC) 電機(jī)可用于開(kāi)發(fā)無(wú)線(xiàn)電動(dòng)工具、真空吸塵器和電動(dòng)自行車(chē)。然而,為了給更緊湊的機(jī)電產(chǎn)品節(jié)省出空間,設(shè)計(jì)人員面臨進(jìn)一步縮小電機(jī)控制電子器件的壓力。


由鋰離子供電的高功率密度、高能效、三相無(wú)刷直流 (BLDC) 電機(jī)可用于開(kāi)發(fā)無(wú)線(xiàn)電動(dòng)工具、真空吸塵器和電動(dòng)自行車(chē)。然而,為了給更緊湊的機(jī)電產(chǎn)品節(jié)省出空間,設(shè)計(jì)人員面臨進(jìn)一步縮小電機(jī)控制電子器件的壓力。


這項(xiàng)任務(wù)并不簡(jiǎn)單。除了將驅(qū)動(dòng)元件壓縮到狹小空間這個(gè)顯著的難題外,還有因所有器件靠的更近而造成的熱管理問(wèn)題,當(dāng)然還有電磁干擾(EMI)問(wèn)題。


電機(jī)控制電路設(shè)計(jì)人員可以采用新一代高度集成的柵極驅(qū)動(dòng)器來(lái)實(shí)現(xiàn)更纖薄的設(shè)計(jì)。它是電機(jī)控制系統(tǒng)最關(guān)鍵的元件。


本文將先探討 BLDC 電機(jī)的運(yùn)行,然后再介紹合適的柵極驅(qū)動(dòng)器以及如何使用它們來(lái)克服緊湊電機(jī)控制系統(tǒng)所面臨的設(shè)計(jì)挑戰(zhàn)。


打造更好的電機(jī)


由于在商業(yè)上面臨著能效和節(jié)省空間的雙重壓力,電機(jī)設(shè)計(jì)得到了迅猛的發(fā)展。數(shù)控 BLDC 電機(jī)代表了這一發(fā)展的一個(gè)分支。這種電機(jī)的普及要?dú)w功于電子換向技術(shù)的應(yīng)用。在該技術(shù)的幫助下,BLDC 電機(jī)的效率要遠(yuǎn)高于傳統(tǒng)(有刷換向)直流電機(jī)。如果兩種電機(jī)以相同速度和負(fù)載運(yùn)行,BLDC 電機(jī)的效率會(huì)比傳統(tǒng)電機(jī)高 20% - 30%。


這種改進(jìn)使得 BLDC 電機(jī)能夠在給定功率輸出條件下變得更小、更輕、更安靜。此外,BLDC 電機(jī)還擁有其他多種優(yōu)勢(shì),包括更好的速度比扭矩特性、更快的動(dòng)態(tài)響應(yīng)、無(wú)噪聲運(yùn)行以及更高的速度范圍。與此同時(shí),工程師們也在推動(dòng)設(shè)計(jì)向著更高電壓和更高頻率發(fā)展,因?yàn)檫@可讓緊湊型電機(jī)完成與大型傳統(tǒng)電機(jī)同樣的功能。


BLDC 電機(jī)成功的關(guān)鍵在于其電子開(kāi)關(guān)模式電源以及電機(jī)控制電路,這種電路可以產(chǎn)生一個(gè)三相輸入,進(jìn)而產(chǎn)生能夠拉動(dòng)電機(jī)轉(zhuǎn)子轉(zhuǎn)動(dòng)的旋轉(zhuǎn)磁場(chǎng)。由于磁場(chǎng)和轉(zhuǎn)子以相同頻率旋轉(zhuǎn),因此這種電機(jī)被歸類(lèi)為“同步”電機(jī)。


霍爾效應(yīng)傳感器可傳達(dá)定子和轉(zhuǎn)子的相對(duì)位置,確保了控制器能夠在適當(dāng)時(shí)刻切換磁場(chǎng)。此外,它還采用了“無(wú)傳感器”技術(shù),通過(guò)監(jiān)控反電動(dòng)勢(shì) (EMF) 來(lái)確定定子和轉(zhuǎn)子的位置。


在三相 BLDC 電機(jī)中,依序施加電流的最常見(jiàn)配置是以橋式結(jié)構(gòu)排列三對(duì)功率 MOSFET。每對(duì)功率 MOSFET 均充當(dāng)逆變器,用于將來(lái)自電源的 DC 電壓轉(zhuǎn)換為驅(qū)動(dòng)電機(jī)繞組所需的 AC 電壓(圖 1)。在高壓應(yīng)用中,通常使用絕緣柵雙極晶體管 (IGBT) 代替 MOSFET。


一招解決緊湊電機(jī)控制設(shè)計(jì)問(wèn)題

圖 1:數(shù)控三相 BLDC 電機(jī)通常使用三對(duì) MOSFET 進(jìn)行控制,一對(duì) MOSFET 為一個(gè)電機(jī)繞組提供 AC 電壓。(圖片來(lái)源:Texas Instruments)


晶體管對(duì)包括低壓側(cè)器件(源極接地)和高壓側(cè)器件(源極在接地和高壓電源軌之間浮動(dòng))。


在典型布局中,使用脈寬調(diào)制 (PWM) 控制 MOSFET 柵極,可以有效地將輸入 DC 電壓轉(zhuǎn)換為調(diào)制驅(qū)動(dòng)電壓。其中應(yīng)使用至少比預(yù)期最大電機(jī)轉(zhuǎn)速高一個(gè)數(shù)量級(jí)的 PWM 頻率。一對(duì) MOSFET 可以控制一個(gè)電機(jī)相位的磁場(chǎng)。


電機(jī)控制系統(tǒng)一個(gè)完整的電機(jī)控制系統(tǒng)包括電源、主機(jī)微控制器、柵極驅(qū)動(dòng)器以及采用半橋拓?fù)浣Y(jié)構(gòu)的 MOSFET(圖 2)。微控制器用于設(shè)置 PWM 占空比并負(fù)責(zé)開(kāi)環(huán)控制。在低壓設(shè)計(jì)中,柵極驅(qū)動(dòng)器和 MOSFET 橋有時(shí)會(huì)集成在一個(gè)單元中。然而,對(duì)于高功率單元,為方便熱管理,柵極驅(qū)動(dòng)器和 MOSFET 橋會(huì)分開(kāi)布置,這樣可以針對(duì)柵極驅(qū)動(dòng)器和橋采用不同的工藝技術(shù)并最大限度地降低 EMI。


一招解決緊湊電機(jī)控制設(shè)計(jì)問(wèn)題

圖 2:基于 TI MSP 430 微控制器的 BLDC 電機(jī)控制示意圖。(圖片來(lái)源:Texas Instruments)


MOSFET 橋可由分立器件或集成芯片組成。將低壓側(cè)和高壓側(cè) MOSFET 集成到同一封裝的關(guān)鍵優(yōu)勢(shì)是,即使兩個(gè) MOSFET 存在不同的功率耗散,集成后也可以使上下 MOSFET 之間實(shí)現(xiàn)自然熱平衡。無(wú)論是集成式還是分立式,每對(duì)晶體管都需要獨(dú)立的柵極驅(qū)動(dòng)器來(lái)控制開(kāi)關(guān)時(shí)序和驅(qū)動(dòng)電流。


此外,可以使用分立元件來(lái)設(shè)計(jì)柵極驅(qū)動(dòng)器電路。這種方法的優(yōu)勢(shì)在于,工程師可以根據(jù) MOSFET 特征精確調(diào)整柵極驅(qū)動(dòng)器并對(duì)性能進(jìn)行優(yōu)化。不過(guò),這種方法也存在缺點(diǎn),它需要高水平的電機(jī)設(shè)計(jì)經(jīng)驗(yàn)以及容納分立解決方案所需的空間。


模塊化電機(jī)控制解決方案提供了另一種選擇,市場(chǎng)上有各種各樣的集成式柵極驅(qū)動(dòng)器。較好的模塊化柵極驅(qū)動(dòng)解決方案包括:

? 高度集成解決方案,可最大限度地減少器件所需的空間

? 高驅(qū)動(dòng)電流解決方案,可降低開(kāi)關(guān)損耗并提高效率

? 高柵極驅(qū)動(dòng)電壓解決方案,可確保以最小內(nèi)阻(“RDS(ON)”)導(dǎo)通 MOSFET

? 高水平過(guò)流、過(guò)壓和過(guò)熱保護(hù)解決方案,可確保系統(tǒng)能夠在最壞情況下可靠運(yùn)行


像 Texas Instruments 的 DRV8323x 三相柵極驅(qū)動(dòng)器系列之類(lèi)的器件不僅能滿(mǎn)足高能效 BLDC 電機(jī)的要求,還能減少系統(tǒng)的元件數(shù)量,同時(shí)降低成本和復(fù)雜性。


DRV8323x 系列有三種型號(hào)。每種型號(hào)都集成了三個(gè)獨(dú)立的柵極驅(qū)動(dòng)器,能夠驅(qū)動(dòng)高壓側(cè)和低壓側(cè)的 MOSFET 對(duì)。柵極驅(qū)動(dòng)器包含一個(gè)電荷泵,可為高壓側(cè)晶體管產(chǎn)生高柵極電壓(最高支持 100% 占空比),還包含一個(gè)線(xiàn)性穩(wěn)壓器,可為低壓側(cè)晶體管供電。


TI 柵極驅(qū)動(dòng)器包括感應(yīng)放大器。如果需要,可以對(duì)放大器進(jìn)行配置,以放大通過(guò)整個(gè)低壓側(cè) MOSFET 的電壓。這些器件可拉出最高 1 A 和灌入 2 A 的峰值柵極驅(qū)動(dòng)電流,其采用單電源供電并具有 6 V 至 60 V 的超寬輸入電源范圍。


例如,DRV8323R 版驅(qū)動(dòng)器集成了三個(gè)雙向電流檢測(cè)放大器,利用低壓側(cè)分流電阻器通過(guò)每個(gè) MOSFET 橋來(lái)監(jiān)控電流水平。電流檢測(cè)放大器的增益設(shè)置可通過(guò) SPI 或硬件接口進(jìn)行調(diào)整。微控制器連接至 DRV8323R 的 EN_GATE,因此可以啟用或禁用柵極驅(qū)動(dòng)輸出。


此外,DRV8323R 驅(qū)動(dòng)器還集成了一個(gè) 600 mA 的降壓穩(wěn)壓器,可為外部控制器供電。該穩(wěn)壓器既可以使用柵極驅(qū)動(dòng)器電源,也可以使用單獨(dú)電源(圖 3)。


一招解決緊湊電機(jī)控制設(shè)計(jì)問(wèn)題

圖 3:高集成度柵極驅(qū)動(dòng)器(如 TI 的 DRV8323R)可以減少系統(tǒng)元件數(shù)量,降低成本和復(fù)雜性,同時(shí)節(jié)省空間。(圖片來(lái)源:Texas Instruments)


這些柵極驅(qū)動(dòng)器具有多項(xiàng)保護(hù)功能,如電源欠壓鎖定、充電泵欠壓鎖定、過(guò)流監(jiān)控、柵極驅(qū)動(dòng)器短路檢測(cè)以及過(guò)熱關(guān)斷等。


每個(gè) DRV832x 都封裝在一個(gè)尺寸僅為 5 x 5 - 7 x 7 mm(取決于選件)的芯片中。這些產(chǎn)品可以節(jié)省 24 個(gè)以上分立元件所需的空間。


采用集成式柵極驅(qū)動(dòng)器進(jìn)行設(shè)計(jì)為使設(shè)計(jì)人員快速開(kāi)始設(shè)計(jì),TI 提供了參考設(shè)計(jì) TIDA-01485。TIDA-01485 是一個(gè)效率達(dá) 99%、功率級(jí)為 1 千瓦 (kW) 的參考設(shè)計(jì),適用于各種應(yīng)用的三相 36 伏 BLDC 電機(jī),例如以 10 芯鋰離子電池供電的電動(dòng)工具等。


該參考設(shè)計(jì)通過(guò)構(gòu)建此功率級(jí)最小的電機(jī)控制電路之一,展示了如何使用高度集成的柵極驅(qū)動(dòng)器(如 DRV8323R)在電機(jī)控制設(shè)計(jì)中節(jié)省空間。該參考設(shè)計(jì)實(shí)現(xiàn)了基于傳感器的控制。

該參考設(shè)計(jì)的主要元件包括 MSP430F5132 微控制器、DRV8323R 柵極驅(qū)動(dòng)器和三個(gè) CSD88599 60 V 半橋 MOSFET 電源模塊(圖 4)。


一招解決緊湊電機(jī)控制設(shè)計(jì)問(wèn)題

圖 4:TIDA-01485 是一個(gè)效率達(dá) 99%、功率級(jí)為 1 kW 的參考設(shè)計(jì),適用于可由 10 芯鋰離子電池供電的三相 36 V BLDC 電機(jī)。(圖片來(lái)源:Texas Instruments)


雖然柵極驅(qū)動(dòng)器是一個(gè)高度集成的模塊化解決方案,能夠消除分立設(shè)計(jì)所帶來(lái)的諸多復(fù)雜性,但仍需要做一些設(shè)計(jì)來(lái)打造能夠充分發(fā)揮其作用的系統(tǒng)。該參考設(shè)計(jì)為設(shè)計(jì)人員展示了一個(gè)全面的解決方案,可幫助其設(shè)計(jì)原型。


例如,柵極驅(qū)動(dòng)器需要幾個(gè)去耦電容器才能正常運(yùn)行。在參考設(shè)計(jì)中,1 微法 (μF) 電容器 (C13) 實(shí)現(xiàn)了低壓側(cè) MOSFET 驅(qū)動(dòng)電壓 (DVDD) 的去耦,而該電壓來(lái)自 DRV8323R 的內(nèi)部線(xiàn)性穩(wěn)壓器(圖 5)。該電容器必須放置在盡可能靠近柵極驅(qū)動(dòng)器的位置,才能最大限度地減小回路阻抗。此外,需要第二個(gè) 4.7 μF 電容器 (C10) 對(duì) 36 V 電池的直流電源輸入 (PVDD) 去耦。


一招解決緊湊電機(jī)控制設(shè)計(jì)問(wèn)題

圖 5:DRV8323R 柵極驅(qū)動(dòng)器應(yīng)用電路。應(yīng)盡量減少跡線(xiàn)長(zhǎng)度,以限制 EMI。(圖片來(lái)源:Texas Instruments)


二極管 D6 有助于隔離柵極驅(qū)動(dòng)器電源,以防在出現(xiàn)短路情況時(shí)電池電壓驟降。此二極管非常重要,因?yàn)樗拇嬖诳纱_保 PVDD 去耦電容器 (C10) 在短時(shí)電壓驟降情況下保持輸入電壓。

保持電壓可防止柵極驅(qū)動(dòng)器進(jìn)入不需要的欠壓鎖定狀態(tài)。C11 和 C12 是使電荷能夠正常運(yùn)行的關(guān)鍵器件,也應(yīng)盡可能地將這兩個(gè)器件放置在靠近柵極驅(qū)動(dòng)器的位置。


一般來(lái)說(shuō),好的設(shè)計(jì)思路是盡量減少高壓側(cè)和低壓側(cè)柵極驅(qū)動(dòng)器的回路長(zhǎng)度,其主要目的是減少 EMI。高壓側(cè)回路是從 DRV8323 GH_X 到功率 MOSFET,并通過(guò) SH_X 返回。低壓側(cè)回路是從 DRV8323 GL_X 到功率 MOSFET,并通過(guò) GND 返回。


開(kāi)關(guān)時(shí)序的重要性


如何選擇 MOSFET 是關(guān)系到 BLDC 電機(jī)性能和效率的關(guān)鍵。由于沒(méi)有兩個(gè) MOSFET 系列完全相同,因此每次選擇 MOSFET 時(shí)都取決于所需的開(kāi)關(guān)時(shí)間。即使是稍微弄錯(cuò)時(shí)序,也會(huì)導(dǎo)致效率低下、EMI 升高以及電機(jī)可能出現(xiàn)故障等問(wèn)題。


例如,不正確的時(shí)序會(huì)引起擊穿,這種情況會(huì)造成低壓側(cè)和高壓側(cè) MOSFET 同時(shí)導(dǎo)通,進(jìn)而導(dǎo)致災(zāi)難性短路。其他定時(shí)問(wèn)題包括寄生電容觸發(fā)瞬變,進(jìn)而可能損壞 MOSFET。此外,外部短路、焊料橋或 MOSFET 在特定狀態(tài)下掛起也會(huì)引起問(wèn)題。


TI 將其 DRV8323 稱(chēng)為“智能”柵極驅(qū)動(dòng)器,原因是這款驅(qū)動(dòng)器可以為設(shè)計(jì)人員提供時(shí)序及反饋控制,來(lái)幫助化解這些問(wèn)題。例如,該驅(qū)動(dòng)器包括一個(gè)內(nèi)部狀態(tài)機(jī),可以防止柵極驅(qū)動(dòng)器出現(xiàn)短路、控制 MOSFET 橋的空載時(shí)間 (IDEAD) 并防止外部功率 MOSFET 出現(xiàn)寄生導(dǎo)通。


此外,DRV8323 柵極驅(qū)動(dòng)器還含有一個(gè)用于高壓側(cè)和低壓側(cè)驅(qū)動(dòng)器的可調(diào)節(jié)推挽拓?fù)?,可?shí)現(xiàn)外部 MOSFET 橋的強(qiáng)力上拉和下拉,從而避免雜散電容問(wèn)題。可調(diào)柵極驅(qū)動(dòng)器支持改變即時(shí)柵極驅(qū)動(dòng)電流 (IDRIVE) 和持續(xù)時(shí)間 (tDRIVE)(無(wú)需限流柵極驅(qū)動(dòng)電阻),可對(duì)系統(tǒng)進(jìn)行微調(diào)(圖 6)。


一招解決緊湊電機(jī)控制設(shè)計(jì)問(wèn)題

圖 6:在某個(gè)三相 BLDC 電機(jī)的 MOSFET 橋中,高壓側(cè) (VGHx) 和低壓側(cè)晶體管 (VGLx) 的電壓和電流輸入。IDRIVE 和 tDRIVE 對(duì)于電機(jī)是否正常運(yùn)行及效率非常重要;IHOLD 用于將柵極維持在所需狀態(tài);ISTRONG 用于防止低壓側(cè)晶體管的柵極至源極電容出現(xiàn)導(dǎo)通。(圖片來(lái)源:Texas Instruments)


IDRIVE 和 tDRIVE 最初應(yīng)根據(jù)外部 MOSFET 的特性進(jìn)行選擇,如柵極到漏極電荷、所需的上升和下降時(shí)間等。例如,如果 IDRIVE 太低,MOSFET 的上升和下降時(shí)間就會(huì)更長(zhǎng),從而導(dǎo)致開(kāi)關(guān)損耗過(guò)高。此外,上升和下降時(shí)間還(在某種程度上)決定了每個(gè) MOSFET 的續(xù)流二極管恢復(fù)峰值所需的能量和持續(xù)時(shí)間,這兩個(gè)因素可能會(huì)進(jìn)一步降低效率。


當(dāng)更改柵極驅(qū)動(dòng)器狀態(tài)時(shí),IDRIVE 會(huì)應(yīng)用于 tDRIVE 周期,該周期必須足夠長(zhǎng),才能確保柵極電容完全充電或放電。根據(jù)經(jīng)驗(yàn),選擇 tDRIVE 時(shí)應(yīng)確保其大約是 MOSFET 開(kāi)關(guān)上升和下降時(shí)間的兩倍。請(qǐng)注意,tDRIVE 不會(huì)增加 PWM 時(shí)間。如果在活動(dòng)期間收到 PWM 命令,還會(huì)終止該周期。


在 tDRIVE 周期之后,一個(gè)固定保持電流 (IHOLD) 會(huì)用于將柵極維持在所需狀態(tài)(上拉或下拉)。在高壓側(cè)導(dǎo)通期間,低壓側(cè) MOSFET 柵極會(huì)受到強(qiáng)力下拉,以防晶體管的柵極至源極電容發(fā)生導(dǎo)通。

固定 tDRIVE 持續(xù)時(shí)間可確保在故障情況下(如 MOSFET 柵極短路),峰值電流時(shí)間受到限制。這可限制能量傳遞并防止柵極驅(qū)動(dòng)引腳和晶體管受損。


結(jié)論


模塊化電機(jī)驅(qū)動(dòng)器無(wú)需使用眾多分立元件,因而節(jié)省了空間,并增強(qiáng)了新一代緊湊型數(shù)控高功率密度 BLDC 電機(jī)的優(yōu)勢(shì)。這些“智能”柵極驅(qū)動(dòng)器還含有一項(xiàng)技術(shù),不僅能簡(jiǎn)化設(shè)置功率 MOSFET 開(kāi)關(guān)時(shí)序的復(fù)雜開(kāi)發(fā)過(guò)程,還能減輕寄生電容的影響并降低 EMI。


盡管如此,還是需要精心選擇外圍電路,如功率 MOSFET 和去耦電容器。不過(guò)如上所示,主流的電機(jī)驅(qū)動(dòng)器供應(yīng)商均會(huì)提供參考設(shè)計(jì),供開(kāi)發(fā)人員設(shè)計(jì)自己的原型。


免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。


推薦閱讀:

如何提高電感傳感器的測(cè)量精度和靈敏度

淺析電力變壓器自動(dòng)降溫電氣控制線(xiàn)路圖

取樣+放大一體化的電流采樣設(shè)計(jì)

如何利用光傳感電路來(lái)降低光電二極管帶寬和噪聲影響

如何掌握PLC觸摸屏控制電機(jī)的正反轉(zhuǎn)



特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉