鋰離子電池安全設(shè)計(jì)制造、PTC限流裝置、壓力安全閥、熱封閉隔膜及提高電池材料的熱穩(wěn)定性等常規(guī)方法,有其局限性,只能在一定程度上降低電池不安全行為的發(fā)生概率。要根本解決,需要研究防短路、防過充、防熱失控、防燃燒及不燃性電解液的新技術(shù),建立電池自激發(fā)安全保護(hù)機(jī)制。
1.防止電池內(nèi)部短路,陶瓷隔膜和負(fù)極熱阻層等保護(hù)涂層。
2.防過充技術(shù)。
①氧化還原電對添加劑。在電解液中加入一種氧化還原電對O/R,當(dāng)電池過充時(shí),R在正極上氧化成O,隨之O擴(kuò)散至負(fù)極又還原成R。如此內(nèi)部循環(huán),使充電電勢鉗制在安全值,抑制電解液分解及其他電極反應(yīng)發(fā)生。
二甲氧基苯衍生物具有穩(wěn)定的電壓鉗制能力,但因溶解度低,鉗制能力小于0.5C;電池自放電大。還需在Shuttle分子結(jié)構(gòu)方面進(jìn)一步研究。
可逆過充保護(hù)不僅能解決電池的過充電問題,且有利于電池組中單體電池的容量平衡,降低對電池一致性的要求,還能延長電池使用壽命。
②電壓敏感隔膜。在隔膜部分微孔中填充一種電活性聚合物,在正常充放電電壓區(qū)間,隔膜呈絕緣態(tài),只允許離子傳導(dǎo);當(dāng)充電電壓達(dá)到控制值時(shí),聚合物被氧化摻雜成為電子導(dǎo)電態(tài),在正負(fù)極間形成聚合物導(dǎo)電橋,使充電電流旁路,可避免電池過充。
3.防止熱失控的技術(shù)。
①溫度敏感電極(PTC電極)。PTC材料在常溫下,分散于聚合物基質(zhì)中的導(dǎo)電炭黑接觸良好,可形成良好的電子傳輸通道,復(fù)合材料有較高的電子導(dǎo)電性;當(dāng)溫度上升至復(fù)合物的居里轉(zhuǎn)化溫度時(shí),聚合物基質(zhì)膨脹,導(dǎo)電炭黑脫離接觸,復(fù)合物電導(dǎo)急劇下降。
高溫下,鑲嵌在PTC電極集流體和電極活性物涂層之間的PTC涂層電阻急劇增大,可切斷電流傳輸,終止電池反應(yīng),防止電池因熱失控引發(fā)的安全問題。
例如,PTC鈷酸鋰(LiCoO2)電極,實(shí)驗(yàn)結(jié)果表明,在80~120℃高溫下,表現(xiàn)出良好的自激發(fā)熱阻斷效果,能防止電池因過充和外部短路引發(fā)的安全問題。
但PTC電極對內(nèi)部短路無能為力。另外,聚合物PTC材料的溫度響應(yīng)特性還有待進(jìn)一步優(yōu)化。
②熱封閉電極。在電極或隔膜表面修飾一層納米球狀熱熔性材料。常溫下,球狀顆粒的堆積形成多孔,不影響離子的液相傳輸;當(dāng)溫度升高至球體材料的融化溫度時(shí),球體融化成致密膜,切斷離子傳輸,可終止電池反應(yīng)。
③熱固化電池。在電解液中加入一種可以發(fā)生熱聚合的單體。當(dāng)溫度升高時(shí)發(fā)生聚合,使電解液固化,切斷離子傳輸,使電池反應(yīng)終止。例如,實(shí)驗(yàn)表明,BMI電解液添加劑對電池充放電基本沒有影響,高溫下,BMI可抑制電池充放電。
4.防止電池燃燒的不燃性電解液。有機(jī)磷酸酯具有高阻燃、對電解質(zhì)鹽較強(qiáng)溶解能力的特性。例如,DMMP(二甲氧基甲基磷酸酯):低粘度(cP~1.75,25℃),低熔點(diǎn)、高沸點(diǎn)(-50~181℃),強(qiáng)阻燃(P-content:25%),鋰鹽溶解度高。
不過,阻燃溶劑在應(yīng)用中存在下述問題:與負(fù)極匹配性較差,電池充放電庫倫效率低。因此,需要尋找匹配的成膜添加劑。
動(dòng)力鋰離子電池商用化中應(yīng)注意的安全問題
對動(dòng)力鋰離子電池的安全性,首先,由于正極材料的熱分解只是熱失控反應(yīng)的一部分,因此從理論上看,磷酸鐵鋰電池并非絕對安全,大容量電池裝車時(shí)要慎重。
其次,由于電池檢測的概率,通過安全性檢測的動(dòng)力電池不能證明是絕對安全的。嚴(yán)格起見,應(yīng)檢測全充放循環(huán)一定周次后的電池;經(jīng)歷低溫充電后的電池;對電池模塊和電池組進(jìn)行安全測試。
還有,在電池使用過程中,整車廠商盡可能將動(dòng)力鋰離子電池的環(huán)境溫度控制在20~45℃范圍,這樣既能有效提高電池使用壽命和可靠性,還能避免低溫析鋰造成的短路和高溫?zé)崾Э貑栴}。
相關(guān)閱讀:
無線充電設(shè)計(jì)必知:通透了解鋰電池技術(shù)
從原因到措施,教你有效防止電池接反(下)
如何設(shè)置安全的鋰電池保護(hù)電路