【導讀】開關導通時,線路和電路板版圖的電感之中會直接積蓄電能(電流能量)。當該能量與開關器件的寄生電容發(fā)生諧振時,就會在漏極和源極之間產(chǎn)生浪涌。下面將利用圖1來說明發(fā)生浪涌時的振鈴電流的路徑。這是一個橋式結(jié)構(gòu),在High Side(以下簡稱HS)和Low Side(以下簡稱LS)之間連接了一個開關器件,該圖是LS導通,電路中存在開關電流IMAIN的情形。通常,該IMAIN從VSW流入,通過線路電感LMAIN流動。
本文的關鍵要點
?漏極和源極間的浪涌是由各種電感分量和MOSFET寄生電容的諧振引起的。
?在實際的版圖設計中,很多情況下無法設計出可將線路電感降至最低的布局,此時,盡可能在開關器件的附近配備緩沖電路來降低線路電感,這是非常重要的。
首先,為您介紹SiC MOSFET功率轉(zhuǎn)換電路中,發(fā)生在漏極和源極之間的浪涌。
· 漏極和源極之間產(chǎn)生的浪涌
· 緩沖電路的種類和選擇
· C緩沖電路的設計
· RC緩沖電路的設計
· 放電型RCD緩沖電路的設計
· 非放電型RCD緩沖電路的設計
· 封裝引起的浪涌差異
SiC MOSFET的漏極和源極之間產(chǎn)生的浪涌
開關導通時,線路和電路板版圖的電感之中會直接積蓄電能(電流能量)。當該能量與開關器件的寄生電容發(fā)生諧振時,就會在漏極和源極之間產(chǎn)生浪涌。下面將利用圖1來說明發(fā)生浪涌時的振鈴電流的路徑。這是一個橋式結(jié)構(gòu),在High Side(以下簡稱HS)和Low Side(以下簡稱LS)之間連接了一個開關器件,該圖是LS導通,電路中存在開關電流IMAIN的情形。通常,該IMAIN從VSW流入,通過線路電感LMAIN流動。
圖1:產(chǎn)生關斷浪涌時的振鈴電流路徑
接下來,LS關斷時,流向LMAIN的IMAIN一般是通過連在輸入電源HVdc和PGND之間的大容量電容CDCLINK,經(jīng)由HS和LS的寄生電容,按照虛線所示路徑流動。此時,在LS的漏極和源極之間,LMAIN和SiC MOSFET的寄生電容COSS(CDS+CDG)就會產(chǎn)生諧振現(xiàn)象,漏極和源極之間就會產(chǎn)生浪涌。如果用VDS_SURGE表示施加在HVdc引腳的電壓,用ROFF表示MOSFET關斷時的電阻,則該浪涌的最大值VHVDC可以用下述公式表示(*1)。
圖2是使用SiC MOSFET SCT2080KE進行測試時關斷時的浪涌波形。當給HVdc施加800V的電壓時,可以算出VDS_SURGE為961V,振鈴頻率約為33MHz。利用公式(1),根據(jù)該波形,可以算出LMAIN約為110nH。
圖2:關斷浪涌波形
再接下來,增加一個圖3所示的緩沖電路CSNB,實質(zhì)性地去掉LMAIN后,其關斷浪涌的波形如圖4所示。
圖3:C緩沖電路
圖4:通過C緩沖電路降低關斷浪涌
可以看到,增加該CSNB之后,浪涌電壓降低50V以上(約901V),振鈴頻率也變得更高,達到44.6MHz,而且包括CSNB在內(nèi),整個電路中的LMAIN變得更小。
同樣,利用公式(1)計算LMAIN,其結(jié)果由原來的110nH左右降低至71nH左右。原本,最好是在進行版圖設計時,將線路電感控制在最低水平。但是,在實際設計過程中,往往會優(yōu)先考慮器件的散熱設計,所以線路并不一定能夠按照理想進行設計。
在這種情況下,其對策方案之一就是盡可能在開關器件附近配置緩沖電路,使之形成旁路電路。這樣既可以將線路電感這一引發(fā)浪涌的根源降至最低,還可以吸收已經(jīng)降至最低的線路電感中積蓄的能量。然后,通過對開關器件的電壓進行鉗制,就可以降低關斷浪涌。
*1:“開關轉(zhuǎn)換器基礎”P95-P107,P95~P107 作者:原田耕介、二宮保、顧文建,出版社:CORONA PUBLISHING CO., LTD. 1992年2月
免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。
推薦閱讀:
介紹一款適用于汽車和工業(yè)場合的高效同步SEPIC控制器