這里需要著重指出的是,對(duì)某些頻率范圍,CISPR測(cè)試要求提倡使用準(zhǔn)峰值(QP)這種檢測(cè)器類型,這將掩蓋實(shí)際頻率。通常EMI部門或外部實(shí)驗(yàn)室一開始是使用簡(jiǎn)單的峰值檢測(cè)器執(zhí)行掃描來發(fā)現(xiàn)問題區(qū)域的。但當(dāng)所發(fā)現(xiàn)的信號(hào)超過或接近規(guī)定極限時(shí),他們也執(zhí)行準(zhǔn)峰值測(cè)量。準(zhǔn)峰值是EMI測(cè)量標(biāo)準(zhǔn)定義的一種方法,用來檢測(cè)信號(hào)包絡(luò)的加權(quán)峰值。它根據(jù)信號(hào)的持續(xù)時(shí)間和重復(fù)率對(duì)信號(hào)進(jìn)行加權(quán),以便對(duì)從廣播角度看解釋為“騷擾”的信號(hào)施加更多的權(quán)重。與不頻發(fā)的脈沖相比,發(fā)生頻率更高的信號(hào)將導(dǎo)致更高的準(zhǔn)峰值測(cè)量結(jié)果。換句話說,問題信號(hào)發(fā)生的越頻繁,問題信號(hào)的絕對(duì)幅度就越可能被準(zhǔn)峰值測(cè)量所屏蔽。
你的位置:首頁 > EMC安規(guī) > 正文
超實(shí)踐經(jīng)驗(yàn):排查EMI問題的實(shí)用性技巧
發(fā)布時(shí)間:2015-09-15 責(zé)任編輯:sherry
【導(dǎo)讀】本文討論的一些可以幫助你減少一個(gè)產(chǎn)品在測(cè)試室進(jìn)行最終完整的EMC一致性評(píng)估時(shí)失敗的風(fēng)險(xiǎn)的技術(shù)。同時(shí)還舉了一個(gè)確定信號(hào)特征和一致性以便找出EMI發(fā)射源的例子。
全世界幾乎所有政府都在嘗試控制他們國家生產(chǎn)的電子產(chǎn)品產(chǎn)生的有害電磁干擾(EMI)(見圖1)。為了向用戶提供一定的保護(hù)和安全等級(jí),政府都會(huì)制訂涉及電子產(chǎn)品設(shè)計(jì)的非常特殊的一些規(guī)則和規(guī)定。
當(dāng)然這是好事。但這也意味著為了盡量減少他們的EMI特征并通過官方的EMI認(rèn)證測(cè)試,許多公司必須在產(chǎn)品設(shè)計(jì)和測(cè)試方面花費(fèi)大量的人力物力。壞消息是,即使采用了好的設(shè)計(jì)原理、選擇了高質(zhì)量的元件并且仔細(xì)地表征了產(chǎn)品,當(dāng)進(jìn)行一致性測(cè)試時(shí),如果測(cè)試并不是所有階段都進(jìn)展順利,那么EMI故障仍有可能影響到產(chǎn)品的發(fā)布日程。
通常公司為了避免這樣的情景出現(xiàn),會(huì)在設(shè)計(jì)和原型建立階段做一些“預(yù)先的一致性”測(cè)量。更好的做法是在產(chǎn)品發(fā)出去做一致性測(cè)試之前就能夠確定和修復(fù)潛在的EMI問題。
當(dāng)然,大多數(shù)公司的實(shí)驗(yàn)室并不具備做絕對(duì)EMI測(cè)量所需的測(cè)試室條件。好消息是,無需復(fù)制測(cè)試室條件就確定和解決EMI問題是完全可行的。本文討論的一些技術(shù)可以幫助你減少一個(gè)產(chǎn)品在測(cè)試室進(jìn)行最終完整的EMC一致性評(píng)估時(shí)失敗的風(fēng)險(xiǎn)。本文還舉了一個(gè)確定信號(hào)特征和一致性以便找出EMI發(fā)射源的例子。
圖1:信號(hào)中不斷變化的電壓和電流會(huì)產(chǎn)生電磁場(chǎng)。
理解EMI報(bào)告
在討論排查技術(shù)之前,介紹一下EMI測(cè)試報(bào)告是很有必要的。乍一看,EMI報(bào)告似乎直接提供了有關(guān)特定頻率點(diǎn)故障的信息,因此事情看起來很簡(jiǎn)單,就是使用報(bào)告中的數(shù)據(jù)確定設(shè)計(jì)中的哪個(gè)元件包含問題源頻率,并特別加以注意,以便通過下一輪測(cè)試。然而,雖然許多測(cè)試條件在報(bào)告中是明確表示的,但一些需要考慮的重要事情可能并不那么明顯。在審查設(shè)計(jì)并試圖判斷問題源時(shí),理解測(cè)試室如何生成這種報(bào)告是很有幫助的。
請(qǐng)看圖2所示的EMI測(cè)試報(bào)告,這份報(bào)告顯示大約90MHz處有個(gè)故障。
圖2:這份EMI測(cè)試報(bào)告顯示大約90MHz處有個(gè)故障。
圖3是對(duì)應(yīng)的列表數(shù)據(jù)報(bào)告,其中詳細(xì)列出了測(cè)試頻率、測(cè)量得到的幅度、校準(zhǔn)后的校正因子以及調(diào)整后的場(chǎng)強(qiáng)。然后將調(diào)整后的場(chǎng)強(qiáng)與下一欄中的指標(biāo)進(jìn)行比較,確定余量或超額量,顯示在最右欄。
在圖3所示的余量欄中,你可以看到有一個(gè)峰值超出了這個(gè)規(guī)范標(biāo)準(zhǔn)在88.7291MHz處規(guī)定的極限,與規(guī)范相差-2.3。
圖3:這個(gè)列表數(shù)據(jù)對(duì)應(yīng)的是圖2,它顯示故障點(diǎn)位于88.7291MHz處,但有許多因素令人懷疑這是否是實(shí)際的頻率。
你完工了,是嗎?不,沒這么快。不要讓所有這些數(shù)字讓你相信這是問題EMI源的精確頻率。事實(shí)上,測(cè)試報(bào)告中給出的頻率很有可能不是實(shí)際的源頻率。國際無線電干擾特別委員會(huì)(CISPR)指出,在執(zhí)行輻射發(fā)射測(cè)試時(shí),依據(jù)具體的頻率范圍必須使用不同的測(cè)試方法。每種范圍要求特定分辨率帶寬的濾波器和檢測(cè)器類型,如表1所示。濾波器帶寬決定了解析實(shí)際感興趣頻率的能力;這意味著頻率范圍在排查問題源好多方面會(huì)有變化。
表1:CISPR測(cè)試要求根據(jù)不同頻率范圍而有所變化,并影響頻率分辨率。
這里需要著重指出的是,對(duì)某些頻率范圍,CISPR測(cè)試要求提倡使用準(zhǔn)峰值(QP)這種檢測(cè)器類型,這將掩蓋實(shí)際頻率。通常EMI部門或外部實(shí)驗(yàn)室一開始是使用簡(jiǎn)單的峰值檢測(cè)器執(zhí)行掃描來發(fā)現(xiàn)問題區(qū)域的。但當(dāng)所發(fā)現(xiàn)的信號(hào)超過或接近規(guī)定極限時(shí),他們也執(zhí)行準(zhǔn)峰值測(cè)量。準(zhǔn)峰值是EMI測(cè)量標(biāo)準(zhǔn)定義的一種方法,用來檢測(cè)信號(hào)包絡(luò)的加權(quán)峰值。它根據(jù)信號(hào)的持續(xù)時(shí)間和重復(fù)率對(duì)信號(hào)進(jìn)行加權(quán),以便對(duì)從廣播角度看解釋為“騷擾”的信號(hào)施加更多的權(quán)重。與不頻發(fā)的脈沖相比,發(fā)生頻率更高的信號(hào)將導(dǎo)致更高的準(zhǔn)峰值測(cè)量結(jié)果。換句話說,問題信號(hào)發(fā)生的越頻繁,問題信號(hào)的絕對(duì)幅度就越可能被準(zhǔn)峰值測(cè)量所屏蔽。
好消息是,峰值和準(zhǔn)峰值掃描對(duì)預(yù)先一致性測(cè)試來說仍然是有用的。圖4給出了一個(gè)峰值和準(zhǔn)峰值檢測(cè)的例子。圖中顯示了峰值檢測(cè)和準(zhǔn)峰值檢測(cè)中都能看到的脈寬為8μs、重復(fù)率為10ms的信號(hào)。結(jié)果準(zhǔn)峰值的檢測(cè)結(jié)果比峰值低了10.1dB。
圖4:峰值檢測(cè)和準(zhǔn)峰值檢測(cè)的比較。
需要記住的一個(gè)好規(guī)則是,準(zhǔn)峰值檢測(cè)值總是小于或等于峰值檢測(cè)值,永遠(yuǎn)不會(huì)大于峰值檢測(cè)值。因此你可以使用峰值檢測(cè)來開展你的EMI排查和診斷。你不需要達(dá)到與EMI部門或?qū)嶒?yàn)室掃描同等程度的精度,因?yàn)闇y(cè)量都是相對(duì)值。如果你的實(shí)驗(yàn)室報(bào)告中的準(zhǔn)峰值檢測(cè)值表明,設(shè)計(jì)超過了3dB,峰值檢測(cè)值超過了6dB,那么你就知道你需要的修復(fù)工作是將信號(hào)減小3dB或更多。
測(cè)試室為出EMI報(bào)告而開展的掃描通常是在特殊條件下進(jìn)行的,你的公司實(shí)驗(yàn)室也許無法復(fù)制這些條件。舉例來說,待測(cè)設(shè)備(DUT)可能放在一個(gè)轉(zhuǎn)盤上,以便于從多個(gè)角度收集信號(hào)。這種方位角信息是很有用的,因?yàn)樗苤甘締栴}發(fā)生的DUT區(qū)域?;蛘逧MI測(cè)試室可能在校準(zhǔn)過的射頻房內(nèi)開展他們的測(cè)量,并報(bào)告作為強(qiáng)場(chǎng)的測(cè)量結(jié)果。
幸運(yùn)的是,你并不需要完全復(fù)制測(cè)試室的條件才能排查EMI測(cè)試故障。與在高度受控的EMI測(cè)試線上執(zhí)行的絕對(duì)測(cè)量不同,可以使用測(cè)試報(bào)告中的信息、深入理解用于產(chǎn)生報(bào)告的測(cè)量技術(shù)以及對(duì)待測(cè)設(shè)備周邊的相對(duì)觀察以隔離問題源并估計(jì)糾正有效性來開展問題的排查工作。
從哪里開始發(fā)現(xiàn)EMI輻射?
現(xiàn)在是把我們的目光專注到有害的EMI源上面的時(shí)候了。當(dāng)我們從EMI的角度看任何一款產(chǎn)品時(shí),整個(gè)設(shè)計(jì)可以被看作是能量源和天線的一個(gè)集合。EMI問題的常見(但絕不是唯一)源包括:
●電源濾波器
●地阻抗
●沒有足夠的信號(hào)返回
●LCD輻射
●元件寄生參數(shù)
●電纜屏蔽不良
●開關(guān)電源(DC/DC轉(zhuǎn)換器)
●內(nèi)部耦合問題
●金屬外殼中的靜電放電
●不連續(xù)的返回路徑
為了確定一塊特定電路板上的能量源以及位于特定EMI問題中心的天線,你需要檢查被觀察信號(hào)的周期。信號(hào)的射頻頻率是多少?是脈沖式的還是連續(xù)的?這些信號(hào)特征可以使用基本的頻譜分析儀進(jìn)行監(jiān)視。
你還需要查看巧合性。待測(cè)設(shè)備(DUT)上的哪個(gè)信號(hào)與EMI事件是同時(shí)發(fā)生的?一般常見的做法是用示波器探測(cè)DUT上的電氣信號(hào)。檢查EMI問題與電氣事件的巧合性無疑是EMI排查中最耗時(shí)間的工作。過去,將來自頻譜分析儀和示波器的信息以同步方式關(guān)聯(lián)在一起一直是很難做的一件事。
然而,混合域示波器(MDO)的推出使情況有了改觀,它能提供同步的而且與時(shí)間相關(guān)聯(lián)的觀察和測(cè)量功能。如圖5所示的這種儀器能夠相當(dāng)容易地讓我們觀察哪個(gè)信號(hào)與哪個(gè)EMI事件同時(shí)發(fā)生,從而可以簡(jiǎn)化EMI排查過程。
圖5:混合域示波器(MDO)將頻譜分析儀、示波器和邏輯分析儀組合在一臺(tái)儀表內(nèi),可以從全部三臺(tái)儀器中產(chǎn)生同步的而且與時(shí)間關(guān)聯(lián)的測(cè)量結(jié)果。圖中顯示的是泰克公司的MDO4000B。
MDO將混合信號(hào)示波器的功能和頻譜分析儀的功能整合在一起。借助這種組合,你能夠自動(dòng)顯示模擬信號(hào)特征、數(shù)字時(shí)序、總線事務(wù)以及射頻并在這些信息基礎(chǔ)上實(shí)現(xiàn)觸發(fā)。一些MDO還能捕獲或觀察頻譜和時(shí)域軌跡,包括射頻幅度對(duì)時(shí)間、射頻相位對(duì)時(shí)間以及射頻頻率對(duì)時(shí)間的關(guān)系曲線。射頻幅度與時(shí)間軌跡如圖6所示。
圖6:這張圖顯示了MDO提供的時(shí)間關(guān)聯(lián)觀察功能,圖中顯示了射頻幅度與時(shí)間的關(guān)系軌跡。
[page]
近場(chǎng)探測(cè)開展相對(duì)測(cè)量
雖然一致性測(cè)試過程設(shè)計(jì)用于產(chǎn)生絕對(duì)的校準(zhǔn)過的測(cè)量,但排查工作很大程度上可以使用從待測(cè)設(shè)備發(fā)生的電磁場(chǎng)的相對(duì)測(cè)量方法。更有甚者,你可以使用MDO的頻譜分析儀功能和射頻通道探測(cè)近場(chǎng)中的波阻行為,從而找出能量源來。與此同時(shí),你可以用示波器某個(gè)模擬通道上的無源探針探測(cè)信號(hào),以便發(fā)現(xiàn)與射頻關(guān)聯(lián)的信號(hào)。
不過首先你得了解一些有關(guān)待探測(cè)的電磁場(chǎng)區(qū)的一些背景知識(shí)。圖7顯示了處于近場(chǎng)和遠(yuǎn)場(chǎng)中的波阻行為以及兩者之間的過渡區(qū)。從圖中可以看到,在近場(chǎng)區(qū)中,場(chǎng)的范圍可以從占主導(dǎo)地位的磁場(chǎng)到占主導(dǎo)地位的電場(chǎng)。在近場(chǎng)中,非輻射行為是主導(dǎo)的,因此波阻取決于源的性質(zhì)和距源的距離。而在遠(yuǎn)場(chǎng)中,阻抗是固定不變的,測(cè)量不僅取決于在近場(chǎng)中可觀察到的活動(dòng),而且取決于天線增益和測(cè)試條件等其它因素。
圖7:這張圖顯示了近場(chǎng)和遠(yuǎn)場(chǎng)中的波阻行為以及兩者之間的過渡區(qū)。近場(chǎng)測(cè)量可用于EMI排查。
近場(chǎng)測(cè)量是可用于EMI排查的一種測(cè)量,因?yàn)樗灰鬁y(cè)試站點(diǎn)提供專門的條件就能讓你查出能量源。然而,一致性測(cè)試是在遠(yuǎn)場(chǎng)中進(jìn)行的,而不是近場(chǎng)。你通常不會(huì)使用遠(yuǎn)場(chǎng),因?yàn)橛刑嗟淖兞孔屗兊脧?fù)雜起來:遠(yuǎn)場(chǎng)信號(hào)的強(qiáng)度不僅取決于源的強(qiáng)度,而且取決于輻射機(jī)制以及可能采取的屏蔽或?yàn)V波措施。根據(jù)經(jīng)驗(yàn)需要記住,如果你能觀察遠(yuǎn)場(chǎng)中的信號(hào),那么應(yīng)該能看到近場(chǎng)中的相同信號(hào)。(然而,能觀察到近場(chǎng)中的信號(hào)而看不到遠(yuǎn)場(chǎng)中的相同信號(hào)是很可能的)
近場(chǎng)探針實(shí)際上就是設(shè)計(jì)用于拾取磁場(chǎng)(H場(chǎng))或電場(chǎng)(E場(chǎng))變化的天線。一般來說,近場(chǎng)探針沒有校準(zhǔn)數(shù)據(jù),因此它們適合用于相對(duì)測(cè)量。如果你對(duì)用于測(cè)量H場(chǎng)和E場(chǎng)變化的探針不熟悉,那么最好了解一些近場(chǎng)探針設(shè)計(jì)和最佳使用方法:
H場(chǎng)(磁場(chǎng))探針具有獨(dú)特的環(huán)路設(shè)計(jì),如圖8所示。重要的是,H場(chǎng)探針的方向是有利于環(huán)路平面與待測(cè)導(dǎo)體保持一致的,這樣布置的環(huán)路可以使磁通量線直接穿過環(huán)路。
圖8:將H場(chǎng)探針與電流流向保持一致可以使磁場(chǎng)線直接穿過環(huán)路。
環(huán)路大小決定了靈敏度以及測(cè)量面積,因此在使用這類探針隔離能量源時(shí)必須十分小心。近場(chǎng)探針套件通常包含許多不同的環(huán)路大小,以便你使用逐漸減小的環(huán)路尺寸來縮小測(cè)量面積。
[page]
H場(chǎng)探針在識(shí)別具有相對(duì)大電流的源時(shí)非常有用,比如:
●低阻抗節(jié)點(diǎn)和電路
●傳輸線
●電源
●端接導(dǎo)線和電纜
E場(chǎng)(電場(chǎng))探針用作小型單極天線,并響應(yīng)電場(chǎng)或電壓的變化。在使用這類探針時(shí),重要的是你要保持探針垂直于測(cè)量平面,如圖9所示。
圖9:將E場(chǎng)探針垂直于導(dǎo)體放置以便觀察電場(chǎng)。
在實(shí)際應(yīng)用中,E場(chǎng)探針最適合查找非常小的區(qū)域,并識(shí)別具有相對(duì)高電壓的源以及沒有端接的源,比如:
●高阻抗節(jié)點(diǎn)和電路
●未端接的PCB走線
●電纜
在低頻段,系統(tǒng)中的電路節(jié)點(diǎn)阻抗可能變化很大;此時(shí)要求一定的電路或?qū)嶒?yàn)知識(shí),以確定H場(chǎng)或E場(chǎng)能否提供最高的靈敏度。在較高頻段,這些區(qū)別可能非常顯著。在所有情況下,開展重復(fù)性的相對(duì)測(cè)量很重要,這樣你就能肯定因?yàn)閷?shí)現(xiàn)的任何變化引起的近場(chǎng)輻射結(jié)果能被精確再現(xiàn)。最重要的是,每次試驗(yàn)改變時(shí)近場(chǎng)探針的布局和方面要保持一致。
[page]
跟蹤EMI輻射源
在這個(gè)例子中,小型微控制器的EMI掃描指示有一個(gè)超限故障似乎來自于中心頻率約為144MHz的寬帶信號(hào)。借助MDO的頻譜分析儀功能,第一步是將H場(chǎng)探針連接到射頻輸入端,用相對(duì)的近場(chǎng)測(cè)量定位能量源。
如上所述,重要的一點(diǎn)是H場(chǎng)探針的方向要讓環(huán)路平面與待測(cè)導(dǎo)體保持一致。在PCB周圍移動(dòng)H場(chǎng)探針,你就可以定位能量源。通過選擇逐漸縮小孔徑的探針,你可以將搜索定位在一個(gè)較小的區(qū)域內(nèi)。
一旦定位到明顯的能量源,如圖10所示的射頻幅度與時(shí)間軌跡就能顯示這個(gè)范圍內(nèi)所有信號(hào)的完整的功率與時(shí)間關(guān)系。利用這個(gè)軌跡線可以清楚地看到顯示屏中有一個(gè)大的脈沖。移動(dòng)頻譜時(shí)間使其通過記錄長度,很明顯可以看到EMI事件(中心位于140MHz左右的寬帶信號(hào))直接對(duì)應(yīng)于這個(gè)大脈沖。為了使測(cè)量穩(wěn)定下來,打開射頻功率觸發(fā)器,然后增加記錄長度以判斷這個(gè)射頻脈沖發(fā)生的頻度。為了測(cè)量脈沖重復(fù)周期,打開測(cè)量標(biāo)記并直接判斷周期。
圖10:MDO的射頻幅度與時(shí)間軌跡(上圖)顯示在140MHz處有一個(gè)顯著的脈沖。頻譜圖形(下圖)顯示了這個(gè)脈沖的頻率內(nèi)容。
明確斷定EMI源的下一步是利用MDO的示波器功能。保持相同的設(shè)置,打開示波器的模擬通道1,瀏覽PCB以尋找與EMI事件同時(shí)發(fā)生的信號(hào)源。
在利用示波器探針瀏覽信號(hào)一段時(shí)間后,就可以發(fā)現(xiàn)圖11所示的信號(hào):在這個(gè)案例中是一個(gè)電源濾波器。從顯示屏上可以清晰地看到,連接示波器通道1的信號(hào)與EMI事件直接相關(guān)?,F(xiàn)在就可以制訂EMI修復(fù)計(jì)劃了,以便在開展認(rèn)證測(cè)試之前解決這個(gè)問題。
圖11:使用示波器模擬通道上的無源探針找出與射頻關(guān)聯(lián)的信號(hào)。
本文小結(jié)
不能通過EMI一致性測(cè)試可能將產(chǎn)品開發(fā)計(jì)劃置于風(fēng)險(xiǎn)之中。然而,預(yù)先一致性測(cè)試可以幫助你在到達(dá)這個(gè)階段之前排除EMI問題。與高度受控的EMI測(cè)試線中的絕對(duì)測(cè)量不同,你可以使用EMI測(cè)試報(bào)告中的信息開展相對(duì)測(cè)量,并用它來隔離問題源,并估計(jì)修復(fù)效果。
高效的EMI排查一般是利用近場(chǎng)探測(cè)方法尋找相對(duì)高的電磁場(chǎng),判斷它們的特征,然后使用混合域示波器將場(chǎng)活動(dòng)與電路活動(dòng)關(guān)聯(lián)在一起來判斷EMI源。本文概述的排查技術(shù)可以有效地幫助你隔離有害的能量源,以便于你在將設(shè)計(jì)提交給EMI認(rèn)證之前修復(fù)這個(gè)問題。
特別推薦
- 兆易創(chuàng)新GD32F30x STL軟件測(cè)試庫獲得德國萊茵TüV IEC 61508功能安全認(rèn)證
- 芯科科技第三代無線開發(fā)平臺(tái)引領(lǐng)物聯(lián)網(wǎng)發(fā)展
- MSO 4B 示波器為工程師帶來更多臺(tái)式功率分析工具
- 艾為電子推出新一代高線性度GNSS低噪聲放大器——AW15745DNR
- 瑞薩發(fā)布四通道主站IC和傳感器信號(hào)調(diào)節(jié)器, 以推動(dòng)不斷增長的IO-Link市場(chǎng)
- e絡(luò)盟現(xiàn)貨供應(yīng) Abracon 新推出的 AOTA 系列微型鑄型電感器
- 加賀富儀艾電子推出支持Wi-Fi 6和藍(lán)牙的無線局域網(wǎng)/藍(lán)牙組合模塊
技術(shù)文章更多>>
- 一文掌握UV LED在空凈消殺領(lǐng)域的主要應(yīng)用
- 聚焦汽車智能化與電動(dòng)化︱AUTO TECH 2025 華南展11月,已全面啟動(dòng),邀您共精彩!
- 【“源”察秋毫系列】 Keithley在碳納米管森林涂層纖維復(fù)合材料的應(yīng)用
- 數(shù)字驅(qū)動(dòng)工業(yè),智能賦能制造 AMTS & AHTE SOUTH CHINA 2024同期會(huì)議全公開!
- 團(tuán)體觀展招募!104CEF開啟組團(tuán)觀眾通道,解鎖更多禮遇
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
車載以太網(wǎng)
車載娛樂
充電
充電電池
充電器
充電樁
觸控屏
觸控顯示
觸摸開關(guān)
傳感技術(shù)
傳感器
傳感器模塊
船型開關(guān)
串聯(lián)電阻公式
創(chuàng)智成
磁傳感器
磁環(huán)電感
磁敏三極管
磁性存儲(chǔ)器
磁性元件
磁珠電感
存儲(chǔ)器
大功率管
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容