什么是 BLDC 電機(jī)換向的最有效方法?
發(fā)布時(shí)間:2017-06-08 責(zé)任編輯:wenwei
【導(dǎo)讀】無刷直流電機(jī)(或簡稱 BLDC電機(jī))是一種采用直流電源并通過外部電機(jī)控制器控制實(shí)現(xiàn)電子換向的電機(jī)。 不同于有刷電機(jī),BLDC 電機(jī)依靠外部控制器來實(shí)現(xiàn)換向。 簡言之,換向就是切換電機(jī)各相中的電流以產(chǎn)生運(yùn)動(dòng)的過程。 有刷電機(jī)是指具有物理電刷的電機(jī),其每轉(zhuǎn)一次可實(shí)現(xiàn)兩次換向過程,而 BLDC 電機(jī)無電刷配備,因此而得名。 由于其設(shè)計(jì)特性,無刷電機(jī)能夠?qū)崿F(xiàn)任意數(shù)量的換向磁極對。
與傳統(tǒng)有刷電機(jī)相比,BLDC 電機(jī)具有極大的優(yōu)勢。 這種電機(jī)的效率通常可提高 15-20%;沒有電刷物理磨損,因而能減少維護(hù);無論在什么額定速度下都可以獲得平坦的轉(zhuǎn)矩曲線。 雖然 BLDC 電機(jī)并不是新發(fā)明,但由于需要復(fù)雜控制和反饋電路,所以廣泛采用的進(jìn)展較為緩慢。 然而,由于近期半導(dǎo)體技術(shù)的發(fā)展、永磁體品質(zhì)提升,以及對更高效率不斷增長的需求,促使 BLDC 電機(jī)在大量應(yīng)用中取代了有刷電機(jī)。 BLDC 電機(jī)在許多行業(yè)找到了市場定位,包括白色家電、汽車、航空航天、消費(fèi)、醫(yī)療、工業(yè)化自動(dòng)設(shè)備和儀器儀表等。
隨著行業(yè)朝著需要在更多應(yīng)用中使用 BLDC 電機(jī)的方向發(fā)展,許多工程師不得不將目光投向該技術(shù)。 雖然電機(jī)設(shè)計(jì)的基礎(chǔ)要素仍然適用,但添加外部控制電路也增加了另一系列需考慮的設(shè)計(jì)事項(xiàng)。 在諸多設(shè)計(jì)問題中,最重要的一點(diǎn)是如何獲取電機(jī)換向的反饋。
電機(jī)換向
在深入探索 BLDC 電機(jī)反饋選項(xiàng)之前,先了解為什么需要它們至關(guān)重要。 BLDC 電機(jī)可配置為單相、兩相和三相;其中最常用的配置為三相。 相數(shù)與定子繞組數(shù)相匹配,而轉(zhuǎn)子磁極數(shù)根據(jù)應(yīng)用需求的不同可以是任意數(shù)量。 因?yàn)?BLDC 電機(jī)的轉(zhuǎn)子受旋轉(zhuǎn)的定子磁極影響,所以須追蹤定子磁極位置,以有效驅(qū)動(dòng)三個(gè)電機(jī)相。 為此,需使用電機(jī)控制器在三個(gè)電機(jī)相上生成六步換向模式。 這六步(或換向相)移動(dòng)電磁場,進(jìn)而使轉(zhuǎn)子永磁體移動(dòng)電機(jī)軸。
圖 1:BLDC 電機(jī)六步換向模式。
通過采用這種標(biāo)準(zhǔn)電機(jī)換向序列,電機(jī)控制器即可利用高頻率脈寬調(diào)制 (PWM) 信號(hào),有效降低電機(jī)承受的平均電壓,從而改變電機(jī)速度。 除此之外,這種設(shè)置通過讓一個(gè)電壓源用于各種各樣的電機(jī),大大提升了設(shè)計(jì)靈活性,即使直流電壓源大大高出電機(jī)額定電壓的情況也不例外。 為了讓此系統(tǒng)保持相對于有刷技術(shù)的效率優(yōu)勢,在電機(jī)和控制器之間需要安裝非常嚴(yán)格的控制回路。 反饋技術(shù)的重要性就體現(xiàn)在這里;控制器要能保持對電機(jī)的精確控制,它必須始終掌握定子相對于轉(zhuǎn)子的確切位置。 預(yù)期和實(shí)際位置出現(xiàn)任何非對準(zhǔn)或相移可能會(huì)導(dǎo)致意想不到的情況及性能下降。 針對 BLDC 電機(jī)換向可采用許多方式來實(shí)現(xiàn)這種反饋,不過最常見的方式是使用霍爾效應(yīng)傳感器、編碼器或旋轉(zhuǎn)變壓器。 另外,某些應(yīng)用也會(huì)依靠無傳感器換向技術(shù)來實(shí)現(xiàn)反饋。
位置反饋
自無刷電機(jī)誕生以來,霍爾效應(yīng)傳感器一直是實(shí)現(xiàn)換向反饋的主力。 因三相控制僅需要三個(gè)傳感器且單位成本較低,所以單純從 BOM 成本角度來看,它們往往是實(shí)現(xiàn)換向最經(jīng)濟(jì)的選擇。 電機(jī)定子中嵌入了檢測轉(zhuǎn)子位置的霍爾效應(yīng)傳感器,這樣就可以切換三相電橋中的晶體管來驅(qū)動(dòng)電機(jī)。 三個(gè)霍爾效應(yīng)傳感器輸出一般標(biāo)記為 U、V 和 W 通道。 雖然霍爾效應(yīng)傳感器能夠有效解決 BLDC 電機(jī)換向問題,但它們僅僅滿足了 BLDC 系統(tǒng)一半所需。
圖 2:三相橋式驅(qū)動(dòng)器電路。
雖然霍爾效應(yīng)傳感器能使控制器驅(qū)動(dòng) BLDC 電機(jī),但遺憾的是,其控制僅限于速度和方向。 在三相電機(jī)中,霍爾效應(yīng)傳感器只能在每個(gè)電循環(huán)內(nèi)提供角度位置。 隨著磁極對數(shù)量的增加,每次機(jī)械轉(zhuǎn)動(dòng)的電循環(huán)數(shù)量也增加,而且隨著 BLDC 的使用變得更加普及,對精確位置傳感的需求也由此增加。 為確保解決方案穩(wěn)健且完整,BLDC 系統(tǒng)應(yīng)提供實(shí)時(shí)位置信息,從而使得控制器不僅可以追蹤速度和方向,還可以追蹤行程距離和角度位置。
為滿足對更嚴(yán)格位置信息的需求,常用的解決方案是向 BLDC 電機(jī)添加增量式旋轉(zhuǎn)編碼器。 通常,除霍爾效應(yīng)傳感器之外,還會(huì)在相同的控制反饋回路系統(tǒng)中添加增量編碼器。 其中霍爾效應(yīng)傳感器用于電機(jī)換向,而編碼器則用于更加精確地追蹤位置、旋轉(zhuǎn)、速度和方向。 由于霍爾效應(yīng)傳感器僅在每個(gè)霍爾狀態(tài)變化時(shí)提供新的位置信息,所以其精度只達(dá)到每一電力循環(huán)六個(gè)狀態(tài);而對雙極電機(jī)而言,僅為每一機(jī)械循環(huán)六個(gè)狀態(tài)。 與能提供分辨率以數(shù)千 PPR(每轉(zhuǎn)脈沖數(shù))計(jì)的增量編碼器(可解碼為狀態(tài)變化次數(shù)的四倍)相比,兩者均需的必要性就顯而易見了。
圖 3:六步霍爾效應(yīng)輸出和梯形電機(jī)相位。
然而,由于電機(jī)制造商目前必須將霍爾效應(yīng)傳感器和增量編碼器都組裝到他們的電機(jī)上,所以許多編碼器制造商開始提供具有換向輸出的增量編碼器,通常我們簡稱為換向編碼器。 這些編碼器經(jīng)過專門設(shè)計(jì),不僅可以提供傳統(tǒng)的正交 A 和 B 通道(以及某些情況下“每轉(zhuǎn)一次”的索引脈沖通道 Z),還可以提供大多數(shù) BLDC 電機(jī)驅(qū)動(dòng)器所需的標(biāo)準(zhǔn) U、V 和 W 換向信號(hào)。 這樣一來,電機(jī)設(shè)計(jì)師就可以省掉同時(shí)安裝霍爾效應(yīng)傳感器和增量編碼器的不必要步驟。
盡管該方法所具有的優(yōu)勢有目共睹,但此方法也做了很大的折衷。 如上文所述,為使 BLDC 電機(jī)有效換向,必須掌握轉(zhuǎn)子和定子的位置。 這意味著必須小心謹(jǐn)慎地確保換向編碼器的 U/V/W 通道與 BLDC 電機(jī)相位正確對準(zhǔn)。
對于光盤上具有固定圖案的光學(xué)編碼器以及必須手動(dòng)放置的霍爾效應(yīng)傳感器而言,實(shí)現(xiàn) BLDC 電機(jī)正確對準(zhǔn)的過程既反復(fù)、又耗時(shí)。 對準(zhǔn)方法還需要額外的設(shè)備,包括第二個(gè)電機(jī)和一個(gè)示波器。 要對準(zhǔn)一個(gè)光學(xué)編碼器或一組霍爾效應(yīng)傳感器,必須使用第二個(gè)電機(jī)來反向驅(qū)動(dòng) BLDC 電機(jī);然后,當(dāng)電機(jī)在第二個(gè)電機(jī)的作用下勻速旋轉(zhuǎn)時(shí),使用示波器監(jiān)控三個(gè)電機(jī)相的反電動(dòng)勢(也稱之為逆電動(dòng)勢或反電勢)。 編碼器或霍爾效應(yīng)傳感器隨后發(fā)出的 U/V/W 信號(hào)必須同示波器上的反電動(dòng)勢波形進(jìn)行對照檢查。 如果 U/V/W 通道和反電動(dòng)勢波形之間有任何差異,則必須進(jìn)行相位應(yīng)調(diào)整。 這個(gè)過程中,每臺(tái)電機(jī)將耗費(fèi) 20 多分鐘的時(shí)間,并且需要大量的實(shí)驗(yàn)室設(shè)備進(jìn)行操作,因此是使用 BLDC 電機(jī)的主要煩惱來源。 雖然光學(xué)換向編碼器通過僅安裝一項(xiàng)技術(shù)而解決了安裝負(fù)擔(dān),但光學(xué)換向編碼器的實(shí)施也具有缺乏多功能性的缺點(diǎn)。 因?yàn)楣鈱W(xué)編碼器使用其光盤中的固定圖案,所以購買之前,電機(jī)磁極數(shù)、正交分辨率和電機(jī)軸的尺寸等都必須掌握清楚。
圖 4:換向通道和電機(jī)相位理想對準(zhǔn)。
電容式換向編碼器
CUI Inc. 推出的增強(qiáng)型換向編碼器可同時(shí)解決這兩個(gè)問題。該編碼器基于其 AMT 系列產(chǎn)品中采用的專利電容技術(shù)。 光學(xué)編碼器采用非常小的 LED,它們發(fā)出的光線透過光盤(帶有特定間隔的槽口),從而生成輸出圖案。 AMT 編碼器原理與之類似,但不同之處在于 AMT 編碼器不是通過 LED 傳輸光線,而是傳輸電場。 PCB 轉(zhuǎn)子將替換光盤,該轉(zhuǎn)子包含調(diào)節(jié)電場的正弦曲線圖案式金屬跡線。 然后,調(diào)制信號(hào)的接收端回傳信號(hào)到發(fā)射器,此時(shí)通過專有 ASIC 將此信號(hào)與原始信號(hào)進(jìn)行比較。 該技術(shù)與數(shù)字游標(biāo)卡尺原理相同,具有極佳的可靠性和精度。
圖 5:電容式編碼器工作原理。
AMT31 系列換向編碼器提供增量輸出 A/B/Z 和換向輸出 U/V/W。 設(shè)計(jì)包含電容式 ASIC 和板載 MCU 后,編碼器就可以產(chǎn)生數(shù)字輸出。 這種方式具有非常重要的作用,因?yàn)樗茉试S用戶按一下按鈕即可按數(shù)字形式設(shè)置編碼器的零位。 只需將 BLDC 電機(jī)鎖定到所需的相位狀態(tài),并使用 AMT One Touch Zero™ 模塊或 AMT Viewpoint™ 編程 GUI 調(diào)零 AMT31 編碼器。 這樣一來,就可以去掉反向驅(qū)動(dòng)電機(jī)或使用示波器查看輸出信號(hào)的步驟,同時(shí)組裝時(shí)間也可大幅減少 20 分鐘。
由于采用了電容技術(shù),因此正交分辨率和換向輸出可實(shí)現(xiàn)動(dòng)態(tài)調(diào)節(jié)。 用戶只需連接 AMT31 編碼器與 AMT Viewpoint GUI,從 20 個(gè)正交分辨率(最大 4096 PPR)以及 7 個(gè)標(biāo)準(zhǔn)磁極對選項(xiàng)(最多 20 個(gè)磁極)列表中進(jìn)行選擇,然后點(diǎn)擊“Program”(編程)即可。 這為開發(fā)過程帶來了優(yōu)勢,工程師能夠快速、輕松地更改原型樣機(jī),并且還能對不同分辨率和 BLDC 磁極數(shù)的多種電機(jī)控制使用單個(gè)庫存單位 (SKU),以提升生產(chǎn)供應(yīng)鏈管理效率。 除了每個(gè)裝置支持多個(gè)分辨率和磁極對數(shù)外,編碼器外殼還易于組裝,同時(shí)可提供多種安裝以及多個(gè)套管尺寸選擇,以便適應(yīng)常用的電機(jī)軸直徑。
另外,AMT Viewpoint GUI 還為 AMT31 系列編碼器帶來前所未有的設(shè)計(jì)支持。 連接到 AMT Viewpoint 時(shí),可以從 AMT31 編碼器下載診斷數(shù)據(jù)并用于避免現(xiàn)場潛在故障以及減少停機(jī)時(shí)間。
總結(jié)
高精度的嚴(yán)格控制回路能讓 BLDC 電機(jī)在許多領(lǐng)域發(fā)揮出色的優(yōu)勢。 精度增加意味著功率損耗更少、精確度更高,以及能讓終端用戶更好地控制 BLDC 操作。 當(dāng)前,BLDC 電機(jī)廣泛已應(yīng)用于多種多樣的領(lǐng)域中,包括外科手術(shù)機(jī)械臂、無人駕駛汽車、裝配線自動(dòng)化等,并且很快將在還未設(shè)想的許多其它領(lǐng)域中獲得一席之地。 BLDC 電機(jī)市場在不斷增長,對 BLDC 電機(jī)的要求卻始終未變:市場需要低成本、高精度位置傳感反饋的高效耐用電機(jī)。 當(dāng)與 BLDC 電機(jī)配合使用時(shí),AMT31 系列編碼器能夠在安裝過程中節(jié)省寶貴的時(shí)間,同時(shí)簡化開發(fā)和制造流程。 憑借其通用性、幾秒之內(nèi)完成編程和調(diào)零設(shè)置的能力,以及與 AMT Viewpoint GUI 的兼容性,AMT31 編碼器很好地切合了快速增長的 BLDC 市場的需求。
推薦閱讀:
特別推薦
- 增強(qiáng)視覺傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- TCL實(shí)業(yè)攬獲多項(xiàng)CES 2025科技大獎(jiǎng),蟬聯(lián)全球消費(fèi)電子品牌TOP10
- 利用高性能電壓監(jiān)控器提高工業(yè)功能安全合規(guī)性——第1部分
- 芯耀輝:從傳統(tǒng)IP到IP2.0,AI時(shí)代國產(chǎn)IP機(jī)遇與挑戰(zhàn)齊飛
- 解決模擬輸入IEC系統(tǒng)保護(hù)問題
- 當(dāng)過壓持續(xù)較長時(shí)間時(shí),使用開關(guān)浪涌抑制器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器