功率MOSFET線性區(qū)工作設(shè)計(jì)
發(fā)布時(shí)間:2018-11-28 責(zé)任編輯:xueqi
【導(dǎo)讀】功率MOSFET有三個(gè)工作狀態(tài),在漏極導(dǎo)通特性曲線上,對(duì)應(yīng)的是三個(gè)工作區(qū):截止區(qū),線性區(qū)和可變電阻區(qū)。注意到:MOSFET的線性區(qū)有時(shí)也稱為:恒流區(qū)或飽和區(qū)。
1、概述
在筆記本電腦主板、LCDTV主板、STB機(jī)頂盒等電子系統(tǒng)應(yīng)用中,內(nèi)部有不同電壓的多路電源,通常需要采用功率MOSFET作為負(fù)載切換開關(guān),控制不同電壓的電源的上電時(shí)序;同時(shí)還有USB接口,用于輸出5V電壓,這些電源通常后面帶有較大的電容,也需要負(fù)載開關(guān),限制后面電容在上電的過程中充電產(chǎn)生的大的浪涌電流,以保護(hù)后面所帶的負(fù)載芯片的安全,同時(shí)不會(huì)導(dǎo)致前面的電源電壓的跌落產(chǎn)生復(fù)位的問題。
筆記本電腦主板19V輸入端,有二個(gè)背靠背的功率MOSFET,一個(gè)用于負(fù)載開關(guān)作軟起動(dòng),限制浪涌電流,另一個(gè)用于防反接。
圖1:筆記本電腦電源
圖2:筆記本電腦主板輸入電路
在通訊系統(tǒng)中,也廣泛使用熱插撥電路,由功率MOSFET組成的熱插撥電路和上述的負(fù)載開關(guān)的功能類同。在這些應(yīng)用中,通常在功率MOSFET的柵極和源極或柵極和漏極并聯(lián)額外的電容,延長(zhǎng)功率MOSFET在線性區(qū)的時(shí)間,以限制流涌的電流。從圖7波形可以明顯看到:功率MOSFET完全導(dǎo)通前,有比較長(zhǎng)的一段時(shí)間工作于時(shí)間線性區(qū)。
圖3:通信系統(tǒng)機(jī)房
圖4:通信系統(tǒng)機(jī)柜板卡熱插撥
圖5:通信系統(tǒng)機(jī)柜
圖6:通信系統(tǒng)板卡電路
圖7:通信系統(tǒng)板卡熱插撥波形
在電池保持板PCM過流關(guān)斷的過程中,從波形可以看到:功率MOSFET同樣也有較長(zhǎng)的一段時(shí)間工作于線性區(qū)。
圖8:電池保持板電路
圖9:電池保持板關(guān)斷波形
在一些輸出電壓需要低噪聲的應(yīng)用,如輸出為12V、24V的供電電源,通常在開關(guān)電源輸出的后面接線性的穩(wěn)壓器來降低噪聲,由于成本考慮或找不到合適的集成線性穩(wěn)壓調(diào)節(jié)器,一般采用分立元件方案組成線性穩(wěn)壓調(diào)節(jié)器,使用中壓的功率MOSFET作為調(diào)整管;在一些風(fēng)扇或電機(jī)調(diào)速的應(yīng)用中,也是采用功率MOSFET作調(diào)整管,通過控制VGS的電壓,來調(diào)節(jié)漏極的電流,從而控制風(fēng)扇、電機(jī)的轉(zhuǎn)速。這些應(yīng)用中,功率MOSFET完全工作在線性區(qū)。
然而,在開關(guān)電源中,功率MOSFET工作在完全關(guān)斷或完全導(dǎo)通狀態(tài),通過線性區(qū)的速度比較快,也就是驅(qū)動(dòng)電壓VGS從閾值電壓VGS(th)開始,到米勒平臺(tái)結(jié)束的這段時(shí)間,比較快,即使如此,也產(chǎn)生了較大的開關(guān)損耗。
功率MOSFET工作完全工作在線性區(qū)或者長(zhǎng)的時(shí)間工作在線性區(qū),會(huì)產(chǎn)生非常大的功率損耗,產(chǎn)生高的熱應(yīng)力;同時(shí)由于工作電壓高,內(nèi)部電場(chǎng)大,容易發(fā)生單元熱不平衡而局部失效的問題。功率MOSFET工作于線性區(qū)的這些問題,將用多篇文章進(jìn)行論述,給出一些設(shè)計(jì)的參考思路。
2、功率MOSFET線性區(qū)工作
功率MOSFET也有三個(gè)工作狀態(tài),在漏極導(dǎo)通特性曲線上,對(duì)應(yīng)的是三個(gè)工作區(qū):截止區(qū),線性區(qū)和可變電阻區(qū)。如圖10所示。注意到:MOSFET的線性區(qū)有時(shí)也稱為:恒流區(qū)或飽和區(qū)。
圖10:AOT1404的漏極導(dǎo)通特性
在前面柵極電荷的章節(jié),設(shè)計(jì)過功率MOSFET的開通過程。在漏極導(dǎo)通特性曲線上,當(dāng)柵極的驅(qū)動(dòng)電壓加在柵極上時(shí),由于柵極有輸入電容,電容的電壓不能突變,因此,柵極的電壓隨時(shí)間線性上升,此時(shí)功率MOSFET仍然工作在截止區(qū),圖10中A-B所示。
當(dāng)柵極的電壓上升到閾值電壓時(shí),漏極開始流過電流,此時(shí),功率MOSFET進(jìn)入到線性區(qū)。隨著柵極的增加,漏極電流也增加,圖10中B-C所示。這個(gè)過程中,VDS電壓變化不大,CGD的電容小,因此很快的放電。這一段時(shí)間也可稱為di/dt時(shí)間段。
漏極電流的變化值等于器件的跨導(dǎo)乘以柵極電壓的變化值。
當(dāng)漏極的電流達(dá)到系統(tǒng)的最大允許電流時(shí),此時(shí)漏極電流不再增加,維持最大值并保持恒定,因此,柵極的電壓受到跨導(dǎo)的限制,也要保持恒定,圖10中C-D所示。
此時(shí),功率MOSFET會(huì)在一段時(shí)間內(nèi)工作在米勒平臺(tái)區(qū),即相對(duì)穩(wěn)定的恒流區(qū)。柵極處于米勒平臺(tái)區(qū)保持恒定的原因在于:漏極電壓VDS開始降低,那么導(dǎo)致Crss兩端的電壓VGD也會(huì)隨之急劇的變化。
從上式可以看到,只有大的電流才能產(chǎn)生大的VGD變化率,來抽取Crss的電荷,因此幾乎所有柵極的電流都被Crss抽走。同時(shí),Crss是一個(gè)動(dòng)態(tài)參數(shù),在漏極電壓變化的過程中,Crss的電容值也會(huì)急劇的增加,此時(shí)動(dòng)態(tài)的Crss主導(dǎo)著輸入電容,這樣,電容CGS相對(duì)而言其回路幾乎沒有電流,因此,柵極的電壓會(huì)維持恒定,從而產(chǎn)生米勒平臺(tái)。這一段時(shí)間也可稱為dv/dt時(shí)間段。
當(dāng)Crss的電荷全部抽走后,米勒平臺(tái)結(jié)束,同時(shí),VDS電壓也降到最低值,即電流和此時(shí)的RDS(on)乘積。隨后柵極電壓繼續(xù)增加,增加到驅(qū)動(dòng)電壓的最大值,如圖10中D-E所示,此時(shí)功率MOSFET進(jìn)入可變電阻區(qū)。
整個(gè)過程中,A-B為截止區(qū),D-E為可變電阻區(qū),B-C-D為線性工作區(qū)。線性區(qū)產(chǎn)生開關(guān)損耗,對(duì)于一個(gè)開關(guān)周期,此時(shí)間段越長(zhǎng),開關(guān)損耗越大。
來源:松哥電源
特別推薦
- 兆易創(chuàng)新GD32F30x STL軟件測(cè)試庫(kù)獲得德國(guó)萊茵TüV IEC 61508功能安全認(rèn)證
- 芯科科技第三代無線開發(fā)平臺(tái)引領(lǐng)物聯(lián)網(wǎng)發(fā)展
- MSO 4B 示波器為工程師帶來更多臺(tái)式功率分析工具
- 艾為電子推出新一代高線性度GNSS低噪聲放大器——AW15745DNR
- 瑞薩發(fā)布四通道主站IC和傳感器信號(hào)調(diào)節(jié)器, 以推動(dòng)不斷增長(zhǎng)的IO-Link市場(chǎng)
- e絡(luò)盟現(xiàn)貨供應(yīng) Abracon 新推出的 AOTA 系列微型鑄型電感器
- 加賀富儀艾電子推出支持Wi-Fi 6和藍(lán)牙的無線局域網(wǎng)/藍(lán)牙組合模塊
技術(shù)文章更多>>
- 讓汽車LED照明無死角,LED驅(qū)動(dòng)的全面進(jìn)化
- 開關(guān)模式電源問題分析及其糾正措施:晶體管時(shí)序和自舉電容問題
- 熱電偶的測(cè)溫原理
- 【泰克先進(jìn)半導(dǎo)體實(shí)驗(yàn)室】 遠(yuǎn)山半導(dǎo)體發(fā)布新一代高壓氮化鎵功率器件
- ADALM2000實(shí)驗(yàn):變壓器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索