關(guān)于“陶瓷電容”的秘密!
發(fā)布時間:2019-08-29 責(zé)任編輯:wenwei
【導(dǎo)讀】1900年意大利L.隆巴迪發(fā)明陶瓷介質(zhì)電容器。30年代末人們發(fā)現(xiàn)在陶瓷中添加鈦酸鹽可使介電常數(shù)成倍增長,因而制造出較便宜的瓷介質(zhì)電容器。
一、陶瓷電容器的由來
1900年意大利L.隆巴迪發(fā)明陶瓷介質(zhì)電容器。30年代末人們發(fā)現(xiàn)在陶瓷中添加鈦酸鹽可使介電常數(shù)成倍增長,因而制造出較便宜的瓷介質(zhì)電容器。
1940年前后人們發(fā)現(xiàn)了現(xiàn)在的陶瓷電容器的主要原材料BaTiO3(鈦酸鋇)具有絕緣性后,開始將陶瓷電容器使用于對既小型、精度要求又極高的軍事用電子設(shè)備當(dāng)中。
而陶瓷疊片電容器于1960年左右作為商品開始開發(fā)。到了1970年,隨著混合IC、計算機(jī)、以及便攜電子設(shè)備的進(jìn)步也隨之迅速的發(fā)展起來,成為電子設(shè)備中不可缺少的零部件?,F(xiàn)在的陶瓷介質(zhì)電容器的全部數(shù)量約占電容器市場的70%左右。
陶瓷介質(zhì)電容器的絕緣體材料主要使用陶瓷,其基本構(gòu)造是將陶瓷和內(nèi)部電極交相重疊。
陶瓷材料有幾個種類,自從考慮電子產(chǎn)品無害化特別是無鉛化后,高介電系數(shù)的PB(鉛)退出陶瓷電容器領(lǐng)域,現(xiàn)在主要使用TiO2(二氧化鈦)、BaTiO3,CaZrO3(鋯酸鈣)等。和其它的電容器相比具有體積小、容量大、耐熱性好、適合批量生產(chǎn)、價格低等優(yōu)點(diǎn)。
由于原材料豐富,結(jié)構(gòu)簡單,價格低廉,而且電容量范圍較寬(一般有幾個PF到上百μF),損耗較小,電容量溫度系數(shù)可根據(jù)要求在很大范圍內(nèi)調(diào)整。
陶瓷電容器品種繁多,外形尺寸相差甚大從0402(約1×0.5mm)封裝的貼片電容器到大型的功率陶瓷電容器。
按使用的介質(zhì)材料特性可分為Ⅰ型、Ⅱ型和半導(dǎo)體陶瓷電容器;按無功功率大小可分為低功率、高功率陶瓷電容器;按工作電壓可分為低壓和高壓陶瓷電容器;按結(jié)構(gòu)形狀可分為圓片形、管型、鼓形、瓶形、筒形、板形、疊片、獨(dú)石、塊狀、支柱式、穿心式等。
二、陶瓷電容器的分類
陶瓷電容器從介質(zhì)類型主要可以分為兩類,即Ⅰ類陶瓷電容器和Ⅱ類陶瓷電容器。
Ⅰ類陶瓷電容器(ClassⅠceramiccapacitor),過去稱高頻陶瓷電容器(High-freqencyceramiccapacitor),是指用介質(zhì)損耗小、絕緣電阻高、介電常數(shù)隨溫度呈線性變化的陶瓷介質(zhì)制造的電容器。它特別適用于諧振回路,以及其它要求損耗小和電容量穩(wěn)定的電路,或用于溫度補(bǔ)償。
Ⅱ類陶瓷電容器(ClassⅡceramiccapacitor)過去稱為為低頻陶瓷電容器(Lowfrequencycermiccapacitor),指用鐵電陶瓷作介質(zhì)的電容器,因此也稱鐵電陶瓷電容器。這類電容器的比電容大,電容量隨溫度呈非線性變化,損耗較大,常在電子設(shè)備中用于旁路、耦合或用于其它對損耗和電容量穩(wěn)定性要求不高的電路中。
Ⅰ類陶瓷電容器
按美國電工協(xié)會(EIA)標(biāo)準(zhǔn)為C0G(是數(shù)字0,不是字母O,有些文獻(xiàn)筆誤為COG)或NP0(是數(shù)字0,不是字母O,有些文獻(xiàn)筆誤為NPO)以及我國標(biāo)準(zhǔn)的CC系列等型號的陶瓷介質(zhì)(溫度系數(shù)為0±30PPM/℃)。
這種介質(zhì)極其穩(wěn)定,溫度系數(shù)極低,而且不會出現(xiàn)老化現(xiàn)象,損耗因數(shù)不受電壓、頻率、溫度和時間的影響,介電系數(shù)可以達(dá)到400,介電強(qiáng)度相對高。
這種介質(zhì)非常適用于高頻(特別是工業(yè)高頻感應(yīng)加熱的高頻功率振蕩、高頻無線發(fā)射等應(yīng)用的高頻功率電容器)、超高頻和對電容量、穩(wěn)定性有嚴(yán)格要求定時、振蕩電路的工作環(huán)境。
這種介質(zhì)電容器唯一的缺點(diǎn)是電容量不能做得很大(由于介電系數(shù)相對小),通常1206表面貼裝C0G介質(zhì)電容器的電容量從0.5PF~0.01μF。
Ⅱ類陶瓷電容器
Ⅱ類的穩(wěn)定級陶瓷介質(zhì)材料如美國電工協(xié)會(EIA)標(biāo)準(zhǔn)的X7R、X5R以及我國標(biāo)準(zhǔn)的CT系列等型號的陶瓷介質(zhì)(溫度系數(shù)為±15.0%)。
這種介質(zhì)的介電系數(shù)隨溫度變化較大,不適用于定時、振蕩等對溫度系數(shù)要求高的場合,但由于其介電系數(shù)可以做得很大(可以達(dá)到1200),因而電容量可以做得比較大,適用于對工作環(huán)境溫度要求較高(X7R:-55~+125℃)的耦合、旁路和濾波。
通常1206的SMD封裝的電容量可以達(dá)到10μF或在再高一些;
II類的可用級陶瓷介質(zhì)材料如美國電工協(xié)會(EIA)標(biāo)準(zhǔn)的Z5U、Y5V以及我國標(biāo)準(zhǔn)的CT系列的低檔產(chǎn)品型號等陶瓷介質(zhì)(溫度系數(shù)為Z5U的+22%,-56%和Y5V的+22%,-82%)。
這種介質(zhì)的介電系數(shù)隨溫度變化較大,不適用于定時、振蕩等對溫度系數(shù)要求高的場合,但由于其介電系數(shù)可以做得很大(可以達(dá)到1000~12000),因而電容量可以做得比更大,適用于一般工作環(huán)境溫度要求(-25~+85℃)的耦合、旁路和濾波。
通常1206表面貼裝Z5U、Y5V介質(zhì)電容器量甚至可以達(dá)到100μF,在某種意義上是取代鉭電解電容器的有力競爭對手。
三、陶瓷電容器的溫度特性
應(yīng)用陶瓷電容器首先要注意的就是其溫度特性;
不同材料的陶瓷介質(zhì),其溫度特性有極大的差異。
第一類陶瓷介質(zhì)電容器的溫度性質(zhì)
根據(jù)美國標(biāo)準(zhǔn)EIA-198-D,在用字母或數(shù)字表示陶瓷電容器的溫度性質(zhì)有三部分:第一部分為(例如字母C)溫度系數(shù)α的有效數(shù)字;第二位部分有效數(shù)字的倍乘(如0即為100);第三部分為隨溫度變化的容差(以ppm/℃表示)。
這三部分的字母與數(shù)字所表達(dá)的意義如表。
例如,C0G(有時也稱為NP0)表示為:第一位字母C為溫度系數(shù)的有效數(shù)字為0,第二位數(shù)字0為有效溫度系數(shù)的倍乘為100=1,第三位字母G為隨溫度變化的容差為±30ppm/℃,即0±30ppm/℃。
C0H分別表示為:第一位字母C為溫度系數(shù)的有效數(shù)字為0,第二位數(shù)字0為有效溫度系數(shù)的倍乘為100=1,第三位字母H為隨溫度變化的容差為±60ppm/℃,即0±60ppm/℃。
S2H則分別表示為:第一位字母S為溫度系數(shù)的有效數(shù)字為3.3,第二位數(shù)字2為有效溫度系數(shù)的倍乘為102=100,第三位字母H為隨溫度變化的容差為±60ppm/℃,即-330±60ppm/℃
第一類陶瓷電容器的電容量幾乎不隨溫度變化,下面以C0G介質(zhì)為例。
C0G介質(zhì)的變化量僅0±30ppm/℃,實(shí)際上C0G的電容量隨溫度變化小于0±30ppm/℃,大約為0±30ppm/℃的一半
第二類陶瓷介質(zhì)電容器的溫度性質(zhì)
根據(jù)美國標(biāo)準(zhǔn)EIA-198-D,在用字母或數(shù)字表示陶瓷電容器的溫度性質(zhì)有三部分:第一部分為(例如字母X)最低工作溫度;第二位部分有效數(shù)字為最高工作溫度;第三部分為隨溫度變化的容差(以ppm/℃表示)。
這三部分的字母與數(shù)字所表達(dá)的意義如表。
常見的Ⅱ類陶瓷電容器有:X7R、X5R、Y5V、Z5U
其中:X7R表示為:第一位X為最低工作溫度-55℃,第二位的數(shù)字7位最高工作溫度+125℃,第三位字母R為隨溫度變化的容值偏差±15%;
X5R表示為:第一位X為最低工作溫度-55℃,第二位的數(shù)字5位最高工作溫度+85℃,第三位字母R為隨溫度變化的容值偏差±15%;
Y5V表示為:第一位Y為最低工作溫度-30℃,第二位的數(shù)字5位最高工作溫度+85℃,第三位字母V為隨溫度變化的容值偏差+22%,-82%±15%。
Z5U表示為:第一位Z為最低工作溫度+10℃,第二位的數(shù)字5位最高工作溫度+85℃,第三位字母U為隨溫度變化的容值偏差+22%,-56%,
四、陶瓷電容器的阻抗頻率特性
第一類介質(zhì)的陶瓷電容器的ESR隨頻率而上升,如圖:
陶瓷電容器的ESR頻率特性:
第一類介質(zhì)的陶瓷電容器阻抗頻率特性:
第二類陶瓷電容器的阻抗頻率特性:
陶瓷電容器的損耗因數(shù)與頻率的關(guān)系:
陶瓷電容器的阻抗頻率特性:
陶瓷電容器的絕緣電阻與溫度的關(guān)系:
損耗因數(shù)與溫度的關(guān)系:
五、電容量與直流偏置電壓的關(guān)系
第一類介質(zhì)電容器的電容量與直流偏置電壓無關(guān)。
第二類介質(zhì)電容器的電容量隨直流偏置電壓變化,如圖。
Y5V介質(zhì)電容器的電容量隨直流偏置電壓變化非常大,從無偏置時的100%電容量下降到額定電壓下的直流偏置電壓時得不到額定電容量的25%,也就是說10μF的電容量在額定電壓時僅為不到2.5μF!
在高溫時由于電容量已經(jīng)下降到很低,所以這時的電容量隨直流偏置電壓的變化不大。
X7R介質(zhì)電容器的電容量隨直流偏置電壓變化雖比較大,但是比Y5V好得多。
六、陶瓷電容器所允許加載的交流電壓與電流同頻率的關(guān)系
主要受電容器的ESR影響;
相對而言,C0G的ESR比較低,故可以承受比較大的電流,相應(yīng)的所允許施加的交流電壓相對比較大;
X7R、X5R、Y5V、Z5U則ESR相對比較大,可承受比C0G要小,與此同時,由于電容量遠(yuǎn)大于C0G,故所施加的電壓將遠(yuǎn)小于C0G。
第一類介質(zhì)電容器的允許電壓、電流與頻率的關(guān)系:
七、第一類介質(zhì)電容器的允許電壓、電流與頻率的解讀
當(dāng)加載頻率相對較低時,即使加載交流電壓為額定交流電壓時,流過電容器的電流低于額定電流時,電容器允許加載額定交流電壓,即左圖的平直部分;
當(dāng)加載頻率升高到即使加載電壓沒有達(dá)到交流額定電壓時的電容器中流過的交流電流已達(dá)到額定電流值,這是需要降低電容器的加載交流電壓,以保證流過電容器的電流不超過額定電流值,即左圖的曲線開始下降部分;
而加載頻率繼續(xù)上升,電容器的損耗因數(shù)而導(dǎo)致的發(fā)熱則成為電容器的加載電壓的主要限制因素,這是加載電壓將隨頻率的上升而急劇下降,即中左圖的曲線急劇下降部分。
與加載交流電壓正相反,電容器加載的交流電流在頻率較低時即使電流沒有達(dá)到額定電流,但電容器上的交流電壓已達(dá)到其額定值,這是加載的交流電流受電容器的額定電壓限制,特行為加載交流電流隨頻率的增加而上升,如圖右圖中的電流隨頻率增加而上升的那部分曲線。
當(dāng)加載頻率上升到即使電容器上的交流電壓沒達(dá)到額定電壓時加載的交流電流已經(jīng)達(dá)到額定電流值這時加載交流電流須保持在不高于額定電流值。
入伙電容器的損耗因素造成的發(fā)熱開始起比較明顯的作用,則加載電流必須降額,如圖的右圖中電流隨頻率上升而下降的那部分曲線。
第二類介質(zhì)陶瓷電容器由于電容量相對第一類介質(zhì)電容器大得多,對于用于濾波的μF級的陶瓷電容器通常的加載交流電壓在1V以下,不可能加載到額定交流電壓值。
因此第二類介質(zhì)電容器大多討論所允許加載的紋波電流電流。
貼片陶瓷電容器的尺寸與耗散功率:
八、貼片電容失效原因和解決辦法
貼片電容(多層片式陶瓷電容器)是目前用量比較大的常用元件,生產(chǎn)的貼片電容來講有NPO、X7R、Z5U、Y5V等不同的規(guī)格,不同的規(guī)格有不同的用途。
在使用過程中我們也經(jīng)常會遇到各種各樣的問題,帶給我們不小的影響,下面主要針對的是貼片電容失效的情形,分析其產(chǎn)生的原因以及對此應(yīng)對的辦法,希望能夠幫助到大家能夠更加快速有效的解決這類的問題。
貼片陶瓷電容最主要的失效模式斷裂
貼片陶瓷電容器作常見的失效是斷裂,這是貼片陶瓷電容器自身介質(zhì)的脆性決定的。
由于貼片陶瓷電容器直接焊接在電路板上,直接承受來自于電路板的各種機(jī)械應(yīng)力,而引線式陶瓷電容器則可以通過引腳吸收來自電路板的機(jī)械應(yīng)力。
因此,對于貼片陶瓷電容器來說,由于熱膨脹系數(shù)不同或電路板彎曲所造成的機(jī)械應(yīng)力將是貼片陶瓷電容器斷裂的最主要因素。
陶瓷貼片電容器的斷裂陶瓷貼片,電容器受到機(jī)械力后斷裂的示意如下圖:
陶瓷貼片電容器機(jī)械斷裂后,斷裂處的電極絕緣間距將低于擊穿電壓,會導(dǎo)致兩個或多個電極之間的電弧放電而徹底損壞陶瓷貼片電容器。
機(jī)械斷裂后,由于電極間放電的陶瓷貼片電容器剖面,顯微結(jié)構(gòu)如下圖:
對于陶瓷貼片電容器機(jī)械斷裂的防止方法主要有:盡可能的減少電路板的彎曲、減小陶瓷貼片電容器在電路板上的應(yīng)力、減小陶瓷貼片電容器與電路板的熱膨脹系數(shù)的差異而引起的機(jī)械應(yīng)力。
推薦閱讀:
特別推薦
- 增強(qiáng)視覺傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- 利用高性能電壓監(jiān)控器提高工業(yè)功能安全合規(guī)性——第1部分
- 芯耀輝:從傳統(tǒng)IP到IP2.0,AI時代國產(chǎn)IP機(jī)遇與挑戰(zhàn)齊飛
- 解決模擬輸入IEC系統(tǒng)保護(hù)問題
- 當(dāng)過壓持續(xù)較長時間時,使用開關(guān)浪涌抑制器
- 用于狀態(tài)監(jiān)測的振動傳感器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器