羅姆SiC MOSFET的新產(chǎn)品為何采用4引腳封裝
發(fā)布時(shí)間:2020-05-14 責(zé)任編輯:wenwei
【導(dǎo)讀】ROHM最近推出了SiC MOSFET的新系列產(chǎn)品“SCT3xxx xR系列”。SCT3xxx xR系列采用最新的溝槽柵極結(jié)構(gòu),進(jìn)一步降低了導(dǎo)通電阻;同時(shí)通過采用單獨(dú)設(shè)置柵極驅(qū)動(dòng)器用源極引腳的4引腳封裝,改善了開關(guān)特性,使開關(guān)損耗可以降低35%左右。此次,針對(duì)SiC MOSFET采用4引腳封裝的原因及其效果等議題,我們采訪了ROHM株式會(huì)社的應(yīng)用工程師。
-關(guān)于SiC MOSFET的SCT3xxx xR系列,除了導(dǎo)通電阻很低,還通過采用4引腳封裝使開關(guān)損耗降低了35%,對(duì)此我們非常感興趣。此次,想請(qǐng)您以4引腳封裝為重點(diǎn)介紹一下該產(chǎn)品。
-首先,請(qǐng)您大致講一下4引腳封裝具體是怎樣的封裝,采用這種封裝的背景和目的是什么。
首先,采用4引腳封裝是為了改善SiC MOSFET的開關(guān)損耗。包括SiC MOSFET在內(nèi)的電源開關(guān)用MOSFET和IGBT,被作為開關(guān)元件廣泛應(yīng)用于各種電源應(yīng)用和電源線路中。必須盡可能地降低這種開關(guān)元件產(chǎn)生的開關(guān)損耗和傳導(dǎo)損耗,但不同的應(yīng)用,其降低損耗的方法也不盡相同。作為其中的一種手法,近年來發(fā)布了一種4引腳的新型封裝,即在MOSFET的源極、漏極、柵極三個(gè)引腳之外,另外設(shè)置了驅(qū)動(dòng)器源極引腳。此次的SCT3xxx xR系列,旨在通過采用最新的溝槽柵極結(jié)構(gòu),實(shí)現(xiàn)更低的導(dǎo)通電阻和傳導(dǎo)損耗;通過采用4引腳封裝,進(jìn)一步發(fā)揮出SiC本身具有的高速開關(guān)性能,并降低開關(guān)損耗。
-那么,我想詳細(xì)了解一下剛剛您的概述中出現(xiàn)的幾個(gè)要點(diǎn)。首先,什么是“驅(qū)動(dòng)器源極引腳”?
驅(qū)動(dòng)器源極引腳是應(yīng)用了開爾文連接原理的源極引腳。開爾文連接是通過電阻測(cè)量中的4個(gè)引腳或四線檢測(cè)方式,在電流路徑基礎(chǔ)上加上兩條測(cè)量電壓的線路,以極力消除微小電阻測(cè)量或大電流條件下測(cè)量時(shí)不可忽略的線纜電阻和接觸電阻的影響的方法,是一種廣為人知的方法。這種4引腳封裝僅限源極,通過使連接?xùn)艠O驅(qū)動(dòng)電路返回線的源極電壓引腳與流過大電流的電源源極引腳獨(dú)立,來消除ID對(duì)柵極驅(qū)動(dòng)電路的影響。
-也就是說基本的思路就是開爾文連接對(duì)吧。
是??!稍后會(huì)給您看實(shí)際的封裝,首先我來介紹一下驅(qū)動(dòng)器源極引腳對(duì)降低開關(guān)損耗的貢獻(xiàn)。
MOSFET通常為電壓驅(qū)動(dòng),通過控制柵極引腳的電壓來導(dǎo)通/關(guān)斷MOSFET。Figure 1為以往的3引腳封裝(TO-247N)MOSFET的常規(guī)柵極驅(qū)動(dòng)電路示例。紅色虛線表示MOSFET封裝內(nèi)部和外部的邊界。
通常,在驅(qū)動(dòng)電源VG和MOSFET的柵極引腳之間,會(huì)插入用來控制開關(guān)速度的外置柵極電阻RG_EXT,而且還包含印刷電路板的布線電感LTRACE。另外,在源極引腳和內(nèi)部的MOSFET芯片之間,包含封裝電感LSOURCE。
在寄生分量中,柵極引腳的封裝電感包含在LTRACE中,而漏極引腳的封裝電感LDRAIN不包含在柵極驅(qū)動(dòng)電路中,因此在這里省略。
-這就涉及到MOSFET驅(qū)動(dòng)中基本的柵極電阻和寄生分量了吧。
是的。但是,如果是普通IGBT的開關(guān)速度的話,可能不會(huì)造成很大影響,但在SiC MOSFET的特點(diǎn)之一“高速開關(guān)”條件下,開關(guān)的漏極-源極間電流ID的轉(zhuǎn)換和LSOURCE引起的電動(dòng)勢(shì)VLSOURCE就成了問題。
我們用Figure 2來更具體一點(diǎn)進(jìn)行說明。Figure 2表示在開關(guān)工作中的電路內(nèi)部電壓情況。
當(dāng)MOSFET被施加VG并導(dǎo)通后,ID急劇增加,LSOURCE產(chǎn)生圖中的電動(dòng)勢(shì)VLSOURCE(Ⅰ)。
由于電流IG流入柵極引腳,因此RG_EXT產(chǎn)生電壓降VRG_EXT(Ⅰ)。
雖然柵極線路的LTRACE也以相同的機(jī)制產(chǎn)生電動(dòng)勢(shì),但非常小,影響很小,因此在此省略。
這些電壓包含在導(dǎo)通時(shí)的驅(qū)動(dòng)電路網(wǎng)中,因此,實(shí)際上施加給內(nèi)部芯片并使MOSFET導(dǎo)通的電壓VGS_INT減少了。VGS_INT的減少可以通過公式(1)來表示。
-也就是說,實(shí)際上施加給內(nèi)部芯片的VGS_INT,是從柵極施加電壓VG減去外置柵極電阻的電壓降和源極引腳寄生電感的電動(dòng)勢(shì)之后的電壓對(duì)吧。
是的。當(dāng)VGS_INT減少后,MOSFET導(dǎo)通的速度(即開關(guān))就會(huì)變慢。
關(guān)斷時(shí)也同樣適用公式(1)。但是,由于IG和dID/dt變?yōu)樨?fù)數(shù),因此RG_EXT和LSOURCE產(chǎn)生標(biāo)記為(Ⅱ)的電壓上升,VGS_INT反而增加。增加后使關(guān)斷速度下降。
-關(guān)于您提到RG_EXT和LSOURCE會(huì)導(dǎo)致開關(guān)速度下降,RG_EXT是外置的柵極電阻,因此只要減小電阻值就可以減少影響了吧?
如您所述,通過減小RG_EXT是可以提高開關(guān)速度的。RG_EXT本來是用來調(diào)整開關(guān)速度的,在這里應(yīng)該理解如果RG_EXT大于所需的值,就會(huì)不必要地降低開關(guān)速度,而且開關(guān)損耗會(huì)增加。
另外,LSOURCE是封裝內(nèi)部的寄生分量,因此無法從外部進(jìn)行調(diào)整。這是非常重要的一點(diǎn)。一般來講,電源開關(guān)元器件的LSOURCE為幾nH到十幾nH,加上當(dāng)dID/dt達(dá)到幾A/ns時(shí)可能會(huì)產(chǎn)生10V以上的電動(dòng)勢(shì)VLSOURCE,這些將對(duì)開關(guān)工作產(chǎn)生很大的影響。
-前面看到數(shù)學(xué)公式時(shí)我還有些疑問,現(xiàn)在基本理解了。
您可能已經(jīng)猜到,要想消除這種VLSOURCE的影響,就需要改變封裝的結(jié)構(gòu)。我們因此而采用了電源源極和驅(qū)動(dòng)器用源極分開的4引腳封裝。
抱歉引言有些長。下面是4引腳封裝的示例。目前ROHM已經(jīng)推出的產(chǎn)品有(a)TO-247-4L和(b)TO-263-7L。
推薦閱讀:
特別推薦
- 增強(qiáng)視覺傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- TCL實(shí)業(yè)攬獲多項(xiàng)CES 2025科技大獎(jiǎng),蟬聯(lián)全球消費(fèi)電子品牌TOP10
- 利用高性能電壓監(jiān)控器提高工業(yè)功能安全合規(guī)性——第1部分
- 芯耀輝:從傳統(tǒng)IP到IP2.0,AI時(shí)代國產(chǎn)IP機(jī)遇與挑戰(zhàn)齊飛
- 解決模擬輸入IEC系統(tǒng)保護(hù)問題
- 當(dāng)過壓持續(xù)較長時(shí)間時(shí),使用開關(guān)浪涌抑制器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器