- “Preamble”必須設(shè)置為“10101010b”
- “Access Address”必須設(shè)置為“10001110100010011011111011010110b(0x8E89BED6)”
- “PDU”包含“報(bào)頭”和“凈載荷”
如何開發(fā)微型太陽能無線傳感器節(jié)點(diǎn)
發(fā)布時(shí)間:2017-10-26 來源:EIJI FUKAWA 責(zé)任編輯:wenwei
【導(dǎo)讀】無線傳感器節(jié)點(diǎn)通過縮減傳感器尺寸、簡化維護(hù)問題和延長電池續(xù)航時(shí)間來降低實(shí)施成本。 本文圖文詳解了設(shè)計(jì)無電池設(shè)備的最好方法是通過用于通信和能量采集的低功耗藍(lán)牙(BLE)等技術(shù)來降低無線傳感器系統(tǒng)的平均功耗。
無線傳感器節(jié)點(diǎn)可通過縮減傳感器尺寸、簡化維護(hù)問題和延長電池續(xù)航時(shí)間而降低實(shí)施成本。事實(shí)上,如果把重點(diǎn)集中在無電池的設(shè)計(jì)上,將能實(shí)現(xiàn)更大的成本效益。
設(shè)計(jì)無電池設(shè)備的最好方法是通過用于通信和能量采集的低功耗藍(lán)牙(BLE)等技術(shù)來降低無線傳感器系統(tǒng)的平均功耗。
圖1為微型無線傳感器的架構(gòu)圖。該傳感器使用具有集成BLE射頻的微控制器(MCU)而創(chuàng)建,可以完全使用能量采集電源管理集成電路(IC)所提供的電源運(yùn)行。
圖1:微型無線傳感器使用具有集成BLE射頻的微控制器(MCU)而創(chuàng)建,經(jīng)優(yōu)化后僅用能量采集電源管理IC所提供的電源運(yùn)行。圖中為完整的無線傳感器 -- CYALKIT-E02太陽能供電BLE傳感器參考設(shè)計(jì)套件(RDK)。
BLE的優(yōu)化
為了做到只用能量采集IC所提供的電源運(yùn)行,傳感器必須優(yōu)化其BLE系統(tǒng)以降低功耗。首先,設(shè)計(jì)人員必須了解BLE子系統(tǒng)的詳情。接下來,需要編寫固件代碼以滿足每種運(yùn)行/功率模式的要求。然后,設(shè)計(jì)人員必須分析實(shí)際功耗以確認(rèn)各種假設(shè)來進(jìn)一步提升系統(tǒng)的能效。
降低功耗技術(shù)的說明可參考賽普拉斯(Cypress)CYALKIT-E02太陽能供電BLE傳感器參考設(shè)計(jì)套件(RDK)。該RDK包含一個(gè)Cypress PSoC 4 BLE與S6AE10xA能量采集電源管理IC(PMIC)。
簡單、無功率優(yōu)化的BLE設(shè)計(jì)要首先把BLE射頻配置為處于不可連接廣播模式的信標(biāo)。BLE信標(biāo)是每隔一定時(shí)間向外進(jìn)行廣播的單向通信方法。它包含一些較小的數(shù)據(jù)包(30字節(jié)),而這些數(shù)據(jù)包構(gòu)成一個(gè)廣播數(shù)據(jù)包發(fā)送出去。想信標(biāo)被發(fā)現(xiàn)可在各類智能手機(jī)或計(jì)算機(jī)應(yīng)用中推送消息、app操作及提示。
圖2顯示了廣播通道數(shù)據(jù)包格式的BLE鏈路層格式。BLE鏈路層擁有“Preamble”(前導(dǎo)碼)、“Access Address”(接入地址)、“Protocol Data Unit(PDU)”(協(xié)議數(shù)據(jù)單元)和“Cyclic Redundancy Code(CRC)”(循環(huán)冗余碼)。請注意,以下信息僅適用于廣播通道數(shù)據(jù)包格式,不含“數(shù)據(jù)通道數(shù)據(jù)包”。
BLE信標(biāo)的數(shù)據(jù)包結(jié)構(gòu)屬于“凈載荷”中的“廣播數(shù)據(jù)”。
圖2:廣播通道數(shù)據(jù)包格式的BLE鏈路層格式。
圖3:BLE信標(biāo)數(shù)據(jù)包格式。
表1列出了設(shè)置值。
表1:BLE信標(biāo)格式。
可以使用電壓和電流波形計(jì)算平均消耗電流以確定BLE設(shè)計(jì)的高效。圖4顯示了無功率優(yōu)化設(shè)計(jì)的功耗結(jié)果。
圖4:無功率優(yōu)化的BLE設(shè)計(jì)的電流消耗。
平均電流約為5 mA,從啟動(dòng)到待機(jī)的總功耗為34.76 mJ。為了做到使用環(huán)境能量運(yùn)行,我們需要降低消耗電流。
通過優(yōu)化固件實(shí)現(xiàn)低功耗
通過優(yōu)化以下4個(gè)功能以降低BLE設(shè)計(jì)的平均電流消耗:
1.低功率啟動(dòng)
2.深度睡眠
3.IMO時(shí)鐘設(shè)置
4.調(diào)試選擇
當(dāng)系統(tǒng)處于低功耗模式時(shí),則需要利用看門狗定時(shí)器(WDT)來喚醒系統(tǒng)。
低功率啟動(dòng)
通電復(fù)位(POR)后,BLE系統(tǒng)通過調(diào)用不同組件的啟動(dòng)功能對這些組件進(jìn)行初始化。初始化時(shí)通過執(zhí)行以下步驟實(shí)現(xiàn)低功耗運(yùn)行:
1.在32.768-kHz watch晶體振蕩器(WCO)啟動(dòng)時(shí),關(guān)閉24-MHz外部晶體振蕩器(ECO)以降低功耗。
2.500 ms后(WCO啟動(dòng)時(shí)間),啟用WDT以喚醒系統(tǒng)。
3.將MCU配置成在500 ms WCO啟動(dòng)時(shí)間內(nèi)處于深度睡眠模式。
4.WCO啟用后,重啟ECO以啟用BLE子系統(tǒng)(BLESS)接口。
5.把WCO置于低功耗模式,并將低頻時(shí)鐘(LFCLK)源從32‐kHz內(nèi)部低速振蕩器(ILO)改為WCO。
6.啟用WDT以喚醒系統(tǒng)。
7.將MCU置于深度睡眠模式。
圖5:低功耗啟動(dòng)波形。
深度睡眠
用戶設(shè)計(jì)應(yīng)管理系統(tǒng)時(shí)鐘、系統(tǒng)功率模式和BLESS功率模式,以實(shí)現(xiàn)BLE MCU的低功耗運(yùn)行。 在BLE事件間隔期間,建議通過執(zhí)行以下步驟實(shí)現(xiàn)深度睡眠:
1.關(guān)閉ECO以降低功耗。
2.1.5s后(BLE事件間隔),啟用WDT以喚醒系統(tǒng)。
3.將MCU置于深度睡眠模式。
4.1.5s后,重啟ECO以啟用BLE子系統(tǒng)(BLESS)接口。
5.發(fā)送BLE廣播數(shù)據(jù)。
6.從步驟1開始重復(fù)。
圖6:深度睡眠波形。
IMO時(shí)鐘設(shè)置
3-MHz到48-MHz內(nèi)部主振蕩器(IMO)是主要的內(nèi)部時(shí)鐘源。IMO的默認(rèn)頻率是48 MHz,可在3 MHz到48 MHz范圍內(nèi)以1 MHz的步長調(diào)節(jié)。在默認(rèn)的校準(zhǔn)設(shè)置下,IMO與本例中RDK的公差為±2%。圖7顯示了改變IMO頻率后的總功耗示例。
圖7:IMO DC規(guī)格和示例總功耗。
調(diào)試選擇
串行線調(diào)試(SWD)引腳用于開發(fā)階段的運(yùn)行時(shí)固件調(diào)試。將SWD引腳配置為調(diào)試模式會(huì)增加電流消耗。因此,這些引腳應(yīng)在最終版本時(shí)切換到通用輸入輸出(GPIO)模式,讓它們在芯片復(fù)位時(shí)仍可用于設(shè)備編程。
我們可以使用電壓和電流波形計(jì)算BLE設(shè)計(jì)的平均消耗電流,以確認(rèn)設(shè)計(jì)上的優(yōu)化程度。圖8顯示了功率優(yōu)化設(shè)計(jì)的功耗結(jié)果。
圖8:功率優(yōu)化的BLE設(shè)計(jì)的電流消耗。
平均電流約為1.5µA,從啟動(dòng)到待機(jī)的總功耗為0.106mJ。
采用能量采集技術(shù)運(yùn)行
在這平均電流和總功耗水平上,需要確認(rèn)系統(tǒng)能夠采用能量采集技術(shù)運(yùn)行。圖9顯示了能量采集系統(tǒng)的框圖。該系統(tǒng)采用了S6AE10xA Energy Harvesting(EH)PMIC系列,可使用CYALKIT-E04 S6AE102A和S6AE103A EVK以及CY8CKIT-042-BLE BLE Pioneer Kit運(yùn)行一整天。
圖9:能量采集系統(tǒng)框圖。
圖10中的框圖顯示了基于S6AE102A和S6AE103APSoC電路板的PSoC 4 BLE的能量采集過程。 Wave1顯示了基于太陽能的BLE運(yùn)行,Wave2顯示了發(fā)送時(shí)的BLE電流消耗。PMIC首先將太陽能存儲(chǔ)到VSTORE1(VST1)上的一個(gè)300-μF陶瓷電容器上,。當(dāng)VST1達(dá)到VVOUTH時(shí),能量被發(fā)送到MCU用于BLE運(yùn)行。
圖10:簡單的能量采集。
但是,這種簡單的能量采集過程,在沒有備用電容器的情況下(例如,沒有光線的期間)不能持續(xù)運(yùn)行一整天。
圖11中的框圖和波形顯示了混合儲(chǔ)能控制功能。用于運(yùn)行系統(tǒng)的能量存儲(chǔ)在VST1中,其余能量用于對VSTORE2(VST2)進(jìn)行充電。當(dāng)沒有環(huán)境光線時(shí),VST2中能持續(xù)為系統(tǒng)提供能量。
圖11:混合儲(chǔ)能控制功能。
圖12中的波形顯示將能量存儲(chǔ)到VSTORE2時(shí)的充電曲線。S6AE10xA將能量存儲(chǔ)到VSTORE1(小電容器)和VSTORE2(大電容器)中。存儲(chǔ)在VSTORE1中的能量用于系統(tǒng)運(yùn)行,其余能量用于VSTORE2(VST2)的子儲(chǔ)能器件充電。VSTORE2中持續(xù)為系統(tǒng)提供能量,因此,即使在沒有環(huán)境光線的情況下,系統(tǒng)也能繼續(xù)運(yùn)行一段時(shí)間。
圖12:存儲(chǔ)多余能量的波形。
圖13中的框圖顯示了混合電源輸入控制模式。Wave1顯示的是PMIC如何控制兩個(gè)電源(太陽能和電池)。PMIC通過轉(zhuǎn)換這兩個(gè)電源在不同場景下驅(qū)動(dòng)系統(tǒng)。環(huán)境光線通常是持續(xù)的,但某些地方可能沒有持續(xù)的光線。PMIC能夠自動(dòng)轉(zhuǎn)換這兩個(gè)電源,在沒有光線的情況下繼續(xù)供電。
圖13:混合電源輸入控制。
S6AE10xA根據(jù)VSTORE1的電壓自動(dòng)更換電源。如果VSOTRE1的電壓達(dá)到VVOUTL,將從VBAT電源供電,以便在無環(huán)境光線的情況繼續(xù)供電。
以下是是如何實(shí)現(xiàn)不同應(yīng)用的例子。
圖14:需要運(yùn)行一整天的小巧的太陽能無線傳感器。
圖15:需要短時(shí)/頻繁操作的小巧的太陽能門傳感器。
圖16:太陽能無源紅外傳感器。
作者:EIJI FUKAWA,賽普拉斯半導(dǎo)體
推薦閱讀:
特別推薦
- 兆易創(chuàng)新GD32F30x STL軟件測試庫獲得德國萊茵TüV IEC 61508功能安全認(rèn)證
- 芯科科技第三代無線開發(fā)平臺(tái)引領(lǐng)物聯(lián)網(wǎng)發(fā)展
- MSO 4B 示波器為工程師帶來更多臺(tái)式功率分析工具
- 艾為電子推出新一代高線性度GNSS低噪聲放大器——AW15745DNR
- 瑞薩發(fā)布四通道主站IC和傳感器信號(hào)調(diào)節(jié)器, 以推動(dòng)不斷增長的IO-Link市場
- e絡(luò)盟現(xiàn)貨供應(yīng) Abracon 新推出的 AOTA 系列微型鑄型電感器
- 加賀富儀艾電子推出支持Wi-Fi 6和藍(lán)牙的無線局域網(wǎng)/藍(lán)牙組合模塊
技術(shù)文章更多>>
- 讓汽車LED照明無死角,LED驅(qū)動(dòng)的全面進(jìn)化
- 開關(guān)模式電源問題分析及其糾正措施:晶體管時(shí)序和自舉電容問題
- 熱電偶的測溫原理
- 【泰克先進(jìn)半導(dǎo)體實(shí)驗(yàn)室】 遠(yuǎn)山半導(dǎo)體發(fā)布新一代高壓氮化鎵功率器件
- ADALM2000實(shí)驗(yàn):變壓器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
電容器公式
電聲器件
電位器
電位器接法
電壓表
電壓傳感器
電壓互感器
電源變壓器
電源風(fēng)扇
電源管理
電源管理IC
電源連接器
電源濾波器
電源模塊
電源模塊
電源適配器
電子書
電阻測試儀
電阻觸控屏
電阻器
電阻作用
調(diào)速開關(guān)
調(diào)諧器
鼎智
動(dòng)力電池
動(dòng)力控制
獨(dú)石電容
端子機(jī)
斷路器
斷路器型號(hào)