旋轉(zhuǎn)變壓器(Resolver)工作原理簡介
汽車旋變解碼應(yīng)用設(shè)計指導(dǎo)
發(fā)布時間:2021-06-07 來源:Maksim Liu 責(zé)任編輯:wenwei
【導(dǎo)讀】在工信部發(fā)布的《新能源汽車產(chǎn)業(yè)發(fā)展規(guī)劃(2021-2035年)》(征求意見稿)中提出,到2025年,新能源汽車新車銷量占比達(dá)到25%左右,智能網(wǎng)聯(lián)汽車新車銷量占比達(dá)到30%,高度自動駕駛智能網(wǎng)聯(lián)汽車實現(xiàn)限定區(qū)域和特定場景商業(yè)化應(yīng)用。新能源汽車主要以電能為動力源,通過電動機(jī)驅(qū)動行駛。為了獲得更好的駕駛體驗,工程師往往需要知道電機(jī)當(dāng)前的角度位置以及速度信息,在算法上提供相應(yīng)扭矩和功率。汽車應(yīng)用駕駛環(huán)境復(fù)雜,旋轉(zhuǎn)變壓器(Resolver)是常被選擇使用在這個應(yīng)用場景的傳感器。
旋轉(zhuǎn)變壓器(Resolver)工作原理簡介
旋轉(zhuǎn)變壓器是一種電磁式傳感器,又稱同步分解器。它是一種測量角度用的小型交流電動機(jī),用來測量旋轉(zhuǎn)物體的轉(zhuǎn)軸角位移和角速度,由定子和轉(zhuǎn)子組成。其中定子繞組作為變壓器的原邊,接受勵磁電壓。轉(zhuǎn)子繞組作為變壓器的副邊,通過電磁耦合得到感應(yīng)電壓。通常副邊會使用兩個繞組線圈,互成90°放置在轉(zhuǎn)子上,如圖1所示,
圖1
在實際的使用中,轉(zhuǎn)子會隨同電機(jī)做同軸旋轉(zhuǎn),即轉(zhuǎn)子的角度速度以及位置就表征了電機(jī)的相應(yīng)狀態(tài)。若我們在定子上施加正弦勵磁信號VR,則該交流能量通過原邊線圈會產(chǎn)生磁通量Φ,則在理想狀況下,該磁通量會在副邊產(chǎn)生感應(yīng)電壓,VS和VC。則通過法拉第電磁感應(yīng)定律可得到VS和VC以及角度Θ的關(guān)系如下:
由此我們可知,若可知道施加激勵VR以及得到的響應(yīng)VS與VC的實時信息,則可根據(jù)上述公式得到角度和速度的信息。在知道Resolver的基本工作原理后,為了得到角度、速度信息,并提供給DSP進(jìn)行算法參考, 我們需要以下功能電路資源輔助Resolver工作,以實現(xiàn)期待的功能:
DAC(Digital to Analog Converter)電路:提供勵磁正弦信號VR。勵磁頻率通常在10kHz到20kHz。
Boost升壓電路:將勵磁信號電壓幅度提高。通常Resolver接收的勵磁信號通常有4Vrms,7Vrms等。同時在應(yīng)用過程中還需要給系統(tǒng)提供一個共模電壓,因此這就需要對DAC的輸出信號進(jìn)行一定的放大。
勵磁放大前級電路:在對DAC輸出的勵磁信號進(jìn)行功率放大前,往往需要利用運放搭建電路對DAC的輸出進(jìn)行濾波以及施加共模電壓。
勵磁功率放大電路:將勵磁信號驅(qū)動能力放大,具體驅(qū)動能力需要看Resolver的規(guī)格。通常需要100mA~300mA。
副邊信號調(diào)理電路:將轉(zhuǎn)子感應(yīng)到的信號VS/VC進(jìn)行濾波以及調(diào)理到ADC可以接受的信號范圍。
ADC(Analog-to-digital converter):如基本原理所介紹,我們需要將VS/VC/VR的模擬信號轉(zhuǎn)換成數(shù)字信號,供RDC進(jìn)行角度和速度的計算。
RDC(Resolver-to-digital converter):執(zhí)行算法,將轉(zhuǎn)子和定子的輸出和感應(yīng)的數(shù)字信號執(zhí)行算法,計算出速度和角度信息,并輸出給DSP的CPU進(jìn)行電機(jī)算法參考。
可以看出,要實現(xiàn)旋變解碼,并不是一件容易的事情。TI在汽車和工業(yè)電機(jī)方案上擁有十分豐富的經(jīng)驗,并提供多種解決方案。本博文將主要向大家介紹兩種應(yīng)用較廣的方案。第一個是基于C2000系列DSP的旋變軟件解碼方案,第二個是基于TI PGA411-Q1的高度集成的旋變接口芯片方案。
基于C2000的旋變軟件解碼方案
圖2展示了基于C2000架構(gòu)的離散旋變軟解碼的硬件方案框圖。
圖2
Boost升壓電路:如前文所說,為達(dá)到Resolver的驅(qū)動電壓,通常需要將勵磁信號進(jìn)行放大。在電動車應(yīng)用開發(fā)中,通常采用2級架構(gòu)得到。首先使用一顆12V(低壓鉛蓄電池)轉(zhuǎn)換成5V的一級電源。然后再利用一顆BOOST升壓電源芯片將5V轉(zhuǎn)換成15V(7-VRMS Mode)的電源。這里的選擇也較多,針對本應(yīng)用并沒有太多的限制。優(yōu)秀的工程師往往會結(jié)合電路中的其他運用與需求,在ti.com中尋找合適的電源芯片。這里推薦可以使用的一級降壓電源LM63635-Q1,二級升壓BOOST電源TPS61175-Q1。
勵磁放大前級電路:汽車應(yīng)用EMI環(huán)境復(fù)雜,為了保證勵磁功率放大電路不被干擾,保持信號完整性不失真,并增加一定的共模,工程師往往需要利用運放搭建勵磁放大前級電路。這里對運放的選擇主要要求較寬的Bandwidth以及較高的開環(huán)增益,以確保信號不失真。這里可推薦使用OPA197系列運放。其具有10-MHz GBW,且OPEN-LOOP GAIN可達(dá)143dB,可確保旋變解碼系統(tǒng)的精度要求。
勵磁功率放大電路:Resolver的勵磁原邊線圈通常是有很低的DCR(DC resistance通常小于100Ω),因此需要有一定的電流輸出能力才可以驅(qū)動Resolver,通常是100-300mA。同時,為了使Resolver得到更好的精度以及線性度,在這里的應(yīng)用中還需要具備較高的SR(壓擺率Slew Rate)。傳統(tǒng)的解決方案是利用Transistors搭建CLASS AB功放電路,其電路復(fù)雜,可靠性低,且成本以及性能均差強(qiáng)人意。TI針對工程師在此處的設(shè)計痛點,研發(fā)出ALM2402F-Q1,這是一顆針對旋變勵磁應(yīng)用設(shè)計的雙路運放。ALM2402F-Q1芯片具有以下特點:
1. 非常高的電流輸出能力,最大可支持400mA的持續(xù)電流輸出。完全滿足各類resolver的需求。
2. 3.4V/us的SR??梢源_保勵磁信號不失真。
3. 內(nèi)置RF/EMI濾波器。在逆變器這樣的復(fù)雜噪聲環(huán)境中可以更好的工作。
利用ALM2402F-Q1可以大大減少工程師的系統(tǒng)BOM,提高系統(tǒng)的可靠性。并且ALM2402F-Q1所提供的電流能力以及SR可以滿足絕大部分的Resolver。ALM2402F-Q1后續(xù)還會推出同系列針對Resolver應(yīng)用的產(chǎn)品,請持續(xù)關(guān)注ti.com。
Resolver 原邊繞組輸入信號、副邊繞組輸出信號調(diào)理方案:如圖3所示,在典型應(yīng)用中,Resolver的原邊勵磁輸入信號,副邊Sin/Cos繞組的輸出信號,我們都需要采集,并由差分信號轉(zhuǎn)換成單端信號提供給ADC以做后續(xù)算法的處理。因此這一部分需要所使用的運放具有差分信號輸入能力且為了獲得更精確的模擬信號,這里系統(tǒng)要求運放需要較低的增益誤差(Gain error)以及偏置(offset)。另外需要注意的是,由于汽車電機(jī)電磁環(huán)境復(fù)雜,為了獲得更佳準(zhǔn)確的采樣信息,這里所使用的運放必須具有較高的CMRR(Common-mode rejection ratio)。工程師可前往ti.com根據(jù)自己的應(yīng)用需求挑選合適的運放。這里我們推薦使用TLVx197-Q1, TLC2272-Q1。
圖3
ADC, DAC&RDC: TI C2000集成了十分豐富的資源供開發(fā)者使用。上述所提到的需要使用的資源包括,3路ADC一路DAC,以及RDC。本例中使用TI C2000 TMS320F28069。TI C2000微控制器片內(nèi)集成多達(dá)4個12位/16位ADC單元,3路12位DAC,其中12位ADC最高采樣率達(dá)到12.5Msps,32位C28x DSP核和協(xié)處理器CLA都可以用來實現(xiàn)旋變解碼算法。TI C2000集成了十分豐富的資源供開發(fā)者使用。任何一個C2000產(chǎn)品都可以實現(xiàn)旋變解碼功能,具體還可以結(jié)合所開發(fā)電路的其他需求進(jìn)行選擇。
TI離散軟解碼方案具有體積小,成本低,精度高,設(shè)計靈活等優(yōu)勢。TI DSP C2000處理器的強(qiáng)大性能可直接用于電機(jī)控制做算法和驅(qū)動的實現(xiàn)。針對離散方案的旋變解碼前端設(shè)計,TI提供了系統(tǒng)參考設(shè)計,TIDA-01527。機(jī)智的工程師可前往ti.com搜索TIDA-01527下載該設(shè)計的相關(guān)資料。
PGA411-Q1旋變接口芯片解碼方案
相比于上述的軟解碼離散方案,TI還提供集成度更高的旋變解碼方案,可以極大簡化系統(tǒng)方案設(shè)計。這就是使用TI旋變接口芯片PGA411-Q1。如下框圖展示了使用TI PGA411-Q1的旋變解碼方案。
圖4
可以看到在MCU和Resolver之間,僅用了一顆PGA411-Q1就完成旋變勵磁與解碼的工作,上述離散方案的電源芯片,運放芯片均不需要。這很大程度上是因為PGA411-Q1針對旋變應(yīng)用的需求做了高度的集成。讓我們一起來看一下PGA411-Q1所集成擁有的內(nèi)部資源,如圖5所示:
圖5
DAC電路:從框圖中我們可以看出PGA411-Q1擁有兩個DAC。其中一個就是產(chǎn)生勵磁正弦信號的DAC。該DAC通過寄存器配置,可設(shè)置生成10kHz到20kHz的正弦勵磁信號。另外一顆DAC還可將運算出來的角度信息進(jìn)行模擬輸出,供工程師調(diào)試使用。
Boost升壓電路:PGA411-Q1內(nèi)部集成了一顆Boost Regulator。最大可提供150mA的輸出電流。Boost的輸入可與PGA411-Q1的5-V電源軌VCC共享,不需要額外的一級電源。Boost的輸出可以通過SPI設(shè)置調(diào)節(jié)。4-VRMS的電壓范圍在9.5V-13.5V,7-VRMS的電壓在13.5V-17.5V。
勵磁放大前級電路與勵磁功率放大電路: PGA411-Q1內(nèi)部集成了Exciter Preamplifier and Power Amplifier。具體可參考圖6。利用TI內(nèi)部集成的Exciter Preamplifier,工程師可以根據(jù)實際應(yīng)用設(shè)置勵磁信號的共模電壓,然后提供給PGA411-Q1內(nèi)部集成的功放模塊進(jìn)行功率放大。PGA411-Q1內(nèi)部的Power Amplifier輸出電流的能力最大可達(dá)145mA,可以滿足大部分的Resolver。若工程師發(fā)現(xiàn)你們所使用的Resolver需要更大的驅(qū)動電流,則建議更換Resolver。不過PGA411-Q1針對無法更換Resolver的應(yīng)用場景也有解決方案,工程師可以disable Power amplifier, Preamplifier的輸出可以直接從ORS Pin得到,只需要將上述C2000方案中的勵磁功率放大電路的ALM2402F-Q1移植到這里與ORS連接即可。這樣的組合就將驅(qū)動能力提升至400mA。
圖6
副邊信號調(diào)理電路:如圖7所展示,PGA411-Q1內(nèi)部集成了AFE(Analog Front-End)。Resolver的勵磁信號以及輸出的SIN/COS信號均可通過PGA411-Q1內(nèi)部集成的AFE進(jìn)行信號調(diào)理。通過SPI可以配置AFE的Gain從0.75-3.5。AFE內(nèi)部ADC分辨率為10bit和12bit, 可通過寄存器進(jìn)行設(shè)置。
圖7
RDC(resolver-to-digital converter):PGA411-Q1內(nèi)置RDC,可對AFE的輸入進(jìn)行TYPE II PI數(shù)字回路補(bǔ)償,并且具有自動偏移校正等功能。并可將運算的結(jié)果通過三種格式進(jìn)行輸出:Parallel, Encoder, SPI??梢詽M足市面上大部分的DSP或者其他處理模塊的接口要求。
除此之外,得益于PGA411-Q1的高度集成化,PGA411-Q1還可對各個功能模塊進(jìn)行診斷和報錯功能。從圖5中我們可以看出,PGA411-Q1對AFE,勵磁功放,內(nèi)部LDO以及BOOST等模塊,都添加了診斷模塊,每個模塊的狀態(tài)都可通過內(nèi)部寄存器讀取。這大大簡化了工程師的外部硬件開發(fā)設(shè)計。并且PGA411-Q1是按照ISO26262流程開發(fā)的器件,專為功能安全項目定制,可提供完善的功能安全文檔。TI基于PGA411-Q1也有一些系統(tǒng)方案設(shè)計可供研發(fā)工程師進(jìn)行參考,TIDA-07507, TIDA-00796。請點擊ti.com搜索相應(yīng)的設(shè)計代碼下載相關(guān)資料。
C2000的離散旋變解碼方案,系統(tǒng)成本更有優(yōu)勢,方案更加靈活,可拓展性強(qiáng)。而基于PGA411-Q1的旋變解碼方案,集成度更高,有豐富的診斷檢測和保護(hù)功能。不少優(yōu)秀的工程師在功能安全項目的設(shè)計中,將兩種方案同時使用,進(jìn)行冗余設(shè)計。無論哪種方案,TI都提供詳盡的參考資料以及強(qiáng)大的技術(shù)支持。請持續(xù)關(guān)注ti.com。
參考文獻(xiàn):
[1] 《新能源汽車產(chǎn)業(yè)發(fā)展規(guī)劃(2021-2035年)》
[2] TIDA-01527: http://www.ti.com/lit/ug/tidudp0/tidudp0.pdf
[3] ALM2402F-Q1 datasheet: http://www.ti.com/lit/ds/symlink/alm2402f-q1.pdf
[3] PGA411-Q1 datasheet: http://www.ti.com/lit/ds/symlink/pga411-q1.pdf
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 增強(qiáng)視覺傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- TCL實業(yè)攬獲多項CES 2025科技大獎,蟬聯(lián)全球消費電子品牌TOP10
- 利用高性能電壓監(jiān)控器提高工業(yè)功能安全合規(guī)性——第1部分
- 芯耀輝:從傳統(tǒng)IP到IP2.0,AI時代國產(chǎn)IP機(jī)遇與挑戰(zhàn)齊飛
- 解決模擬輸入IEC系統(tǒng)保護(hù)問題
- 當(dāng)過壓持續(xù)較長時間時,使用開關(guān)浪涌抑制器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器