你的位置:首頁 > 傳感技術(shù) > 正文

使用電荷放大器處理壓電加速度計輸出

發(fā)布時間:2023-04-21 責(zé)任編輯:lina

【導(dǎo)讀】使用壓電元件,壓電加速度計產(chǎn)生與施加的加速度成比例的電荷輸出。電荷輸出是一種難以測量的信號類型,因為它會隨著時間的推移通過泄漏電阻逐漸減小。


壓電加速度計的背景

使用壓電元件,壓電加速度計產(chǎn)生與施加的加速度成比例的電荷輸出。電荷輸出是一種難以測量的信號類型,因為它會隨著時間的推移通過泄漏電阻逐漸減小。

此外,作為壓電加速度計中使用的典型傳感元件,這些傳感器會產(chǎn)生每牛頓數(shù)十或數(shù)百皮庫侖范圍內(nèi)的少量電荷。因此,通常需要信號調(diào)理電路才能成功提取加速度信息,而不會耗散任何電荷。這需要具有大輸入阻抗的放大級,以防止產(chǎn)生的電荷通過與傳感元件并聯(lián)的放大器的輸入阻抗泄漏。

事實上,盡管皮埃爾和雅克居里于 1880 年發(fā)現(xiàn)了壓電效應(yīng),但直到 1950 年代,由于缺乏具有足夠高輸入阻抗的放大器,它才具有實際用途。電荷放大器是處理壓電傳感器輸出的技術(shù)。電荷放大器將傳感器產(chǎn)生的電荷轉(zhuǎn)換為可用的電壓信號。

文章“理解和實現(xiàn)壓電傳感器系統(tǒng)的電荷放大器”和“如何設(shè)計壓電傳感器的電荷放大器”很好地介紹了電荷放大器的基礎(chǔ)知識。

下面,我們將簡要概述基本概念以及一些額外的細(xì)節(jié)。

壓電傳感器等效電路

首先,圖 1 顯示了兩個可用于模擬壓電傳感器的等效電路。


使用電荷放大器處理壓電加速度計輸出

圖 1. 壓電傳感器的兩個示例電路模型 (a) (b) 及其原理圖符號 (c)。


壓電傳感元件由放置在兩個電極之間的介電材料組成。當(dāng)施加機(jī)械力時,傳感器會產(chǎn)生一些電荷。考慮到這一點,壓電加速度計可以建模為在受到加速度時自行充電的電容器。這種用法導(dǎo)致圖 1(a) 中的電路模型。在這個等效電路中,電荷源 q p與傳感器的電容 C p并聯(lián)放置。電阻器 R p模擬傳感器的絕緣電阻,為產(chǎn)生的電荷創(chuàng)建泄漏路徑。

另一方面,圖 1(b) 描繪了另一種電路模型,該模型使用與傳感器電容器串聯(lián)的電壓源來考慮產(chǎn)生的電荷的影響。開路壓電傳感元件的輸出電壓等于產(chǎn)生的電荷 q p除以電容 C p。在圖 1(b) 中,結(jié)合了 V eq以產(chǎn)生傳感器的開路電壓。,圖 1(c) 顯示了壓電傳感器的典型示意圖符號。

電荷放大器配置——確定輸出電壓

電荷放大器的基本配置如圖 2 所示。

使用電荷放大器處理壓電加速度計輸出
圖 2. 顯示傳感器內(nèi)電荷放大器配置的示意圖。


在此圖中,電容器 C C  + C IN模擬電纜電容加上電荷放大器的輸入電容。當(dāng)傳感器受到加速時,傳感器產(chǎn)生的電荷 q p出現(xiàn)在電容器 C p和 C C  + C IN上。

傳感器的輸出電壓試圖改變運算放大器反相輸入的電位。但是,我們知道,由于負(fù)反饋機(jī)制和運放的高增益,運放的反相輸入保持在虛地。

運算放大器實際上將一些電荷轉(zhuǎn)移到反相輸入,以使傳感器的輸出電壓為零,并將反相輸入保持在虛地。該電荷與傳感器產(chǎn)生的電荷相等,極性相反。運算放大器通過反饋路徑提供此電荷,即通過 R F和 C F的組合。

使用適當(dāng)設(shè)計的電荷放大器,RF在感興趣的頻率范圍內(nèi)遠(yuǎn)大于 C F的阻抗。因此,C F是反饋路徑中的主要元件,放大器傳輸?shù)椒聪噍斎攵说碾姾墒峭ㄟ^反饋電容器提供的。換句話說,電荷放大器補(bǔ)償傳感器產(chǎn)生的電荷 q p ,反饋電容器 C F中具有相反極性的等量電荷。

因此,等于 C F兩端電壓的輸出電壓可計算為:

$$V_{, out} = -frac{q_{p}}{C_{F}}$$

使用電荷放大器的主要優(yōu)點

使用電荷放大器,傳感器兩端的電壓理想情況下為零。因此,任何與傳感器并聯(lián)的絕緣電阻,如電纜的絕緣電阻或傳感器的漏電電阻Rp,都不能流過電流。因此,傳感器產(chǎn)生的電荷不會消散。此外,輸出電壓只是反饋電容的函數(shù),因此傳感器和電纜電容不能改變電路的增益。

電荷放大器時間常數(shù)參數(shù)——反饋電阻

反饋電阻R F為放大器的反相輸入提供直流通路,并設(shè)置該節(jié)點的直流電壓。但是,添加此電阻器會限制測量直流(或極低頻率)加速度信號時的精度。

正如我們上面所討論的,傳感器產(chǎn)生的電荷通過電荷放大器操作轉(zhuǎn)移到反饋電容器。此電荷可通過與 C F并聯(lián)的反饋電阻器逐漸泄漏。

事實上,放大器的準(zhǔn)靜態(tài)行為由時間常數(shù)參數(shù)決定:

$$ au=R_{F}C_{F}$$

在電荷放大器的上下文中,準(zhǔn)靜態(tài)(或近靜態(tài))行為是指測量在相對較長的持續(xù)時間內(nèi)保持恒定的信號。為了測量非常低頻的信號,時間常數(shù)應(yīng)該化。

為了更好地理解時間常數(shù)參數(shù)對我們測量的影響,請考慮圖 3 中所示的波形。


使用電荷放大器處理壓電加速度計輸出

圖 3.輸出電荷放大器(底部)和傳感器信號(頂部)波形。圖片由奇石樂提供。


在此圖中,頂部波形顯示傳感器產(chǎn)生的電荷,而底部波形顯示電荷放大器的輸出。在此示例中,假設(shè)充電波形具有固定的直流值以及一些高頻分量。輸入的高頻分量按預(yù)期出現(xiàn)在輸出中。然而,初接近輸入直流值的輸出直流值逐漸接近零伏。這種趨勢是由于存儲在 C F中的靜電荷通過 R F泄漏。

如您所見,經(jīng)過一個 $$ au$$ 的時間間隔后,輸出的 DC 值減少到其初始值的 37%。對于某些類型的電荷放大器,可以在不同的反饋電阻值之間切換,以根據(jù)加速度信號的低頻內(nèi)容調(diào)整時間常數(shù)參數(shù)。

帶復(fù)位開關(guān)的電荷放大器

或者,一些電荷放大器包含一個復(fù)位開關(guān)而不是反饋電阻器,如圖 4 所示,這為我們提供了時間常數(shù)值。


使用電荷放大器處理壓電加速度計輸出
圖 4. 顯示電荷放大器的原理圖,使用復(fù)位開關(guān),配置有傳感器。 


在進(jìn)行測量之前,打開開關(guān)以使反饋電容器放電并設(shè)置運算放大器反相輸入的直流電壓。然后,關(guān)閉開關(guān)以開始測量階段,如圖 5 所示。


使用電荷放大器處理壓電加速度計輸出
圖 5. 電荷放大器的電路操作。圖片由奇石樂提供


同樣,上部曲線顯示傳感器產(chǎn)生的電荷,下部曲線描述電荷放大器的輸出。請注意,當(dāng)開關(guān)打開時,輸出為零。結(jié)果,復(fù)位開關(guān)也為隨后的測量固定了零點。

雖然合并一個復(fù)位開關(guān)可以化時間常數(shù),但它會使電路容易出現(xiàn)漂移現(xiàn)象。漂移是指電荷放大器輸出在一段時間內(nèi)發(fā)生的變化,而不是由被測物理參數(shù)的變化(我們討論的加速度)引起的。漂移是由幾種不同的非理想效應(yīng)引起的,例如運算放大器的輸入偏置電流和失調(diào)電壓。

為了進(jìn)一步討論,應(yīng)該更詳細(xì)地評估反饋電阻器對放大器低頻響應(yīng)和漂移行為的影響。


免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:

模擬運算放大器的失調(diào)電壓變化

Boost變換器的二極管

微控制器和嵌入式系統(tǒng)中的并發(fā)和中斷

海康威視發(fā)布2022年ESG報告:科技為善,助力可持續(xù)的美好未來

如何設(shè)計簡單的電壓控制雙向電流源


特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉