你的位置:首頁 > 互連技術(shù) > 正文

開關(guān)電源:關(guān)于TL431電路的電阻取值

發(fā)布時間:2022-11-14 責任編輯:lina

【導讀】據(jù)我們了解,這里面一些電阻是跟環(huán)路相關(guān)的。不過在設(shè)計的時候,我們首先需要保證的不是環(huán)路,而是這個電路能不能工作起來,也就是說要給TL431合適的偏置。這個應該很容易理解吧,類似三極管放大,前提也是要給對直流偏置。


據(jù)我們了解,這里面一些電阻是跟環(huán)路相關(guān)的。不過在設(shè)計的時候,我們首先需要保證的不是環(huán)路,而是這個電路能不能工作起來,也就是說要給TL431合適的偏置。這個應該很容易理解吧,類似三極管放大,前提也是要給對直流偏置。


之前有小伙伴讓我們聊聊幾個電阻的取值,就是下圖的Rled,Rbias,R1,Rlower等。那么就寫寫吧,畢竟,這個電路確實用得非常多,實際工作中確實也需要知道這個。


開關(guān)電源:關(guān)于TL431電路的電阻取值


從上一節(jié)我們知道,這里面一些電阻是跟環(huán)路相關(guān)的。不過在設(shè)計的時候,我們首先需要保證的不是環(huán)路,而是這個電路能不能工作起來,也就是說要給TL431合適的偏置。這個應該很容易理解吧,類似三極管放大,前提也是要給對直流偏置。

TL431工作前提條件

TL431工作主要有下面幾點要求(以TI的TL431C為例):

1、Vka>2.5V,Vka<36V
2、Ika>1mA,Ika<100mA,Iled<50mA
3、I分壓電阻電流>100*Iref

那么這幾個要求咋來的呢?

Ika,Vka可以直接從手冊中看出來


開關(guān)電源:關(guān)于TL431電路的電阻取值


不過手冊中Vka只寫了電壓上限,那么我說的Vka>2.5V怎么來的呢?

其實可以從TL431內(nèi)部框圖(規(guī)格書中有)中看出來,正常工作時,下面這個管子工作在了放大區(qū),那么圖中所示的三極管的集電極電壓要比基極電壓要大,即Cathode的電壓要比Vref的電壓要高,我們知道工作的時候Vref=2.5V,所以就有了Vka>2.5V。(Vka就是Cathode和Anode之間的電壓)


開關(guān)電源:關(guān)于TL431電路的電阻取值


Ika<100mA好理解,芯片電流大了,必然會發(fā)熱,因此必須有個上限,像這種sot23封裝的,電流上限一般也就在這個級別。

Ika>1mA,這是因為TL431工作時要滿足靜態(tài)偏置電流,這是其工作的條件。詳細原因在我們前面的章節(jié)“TL431穩(wěn)壓是如何做到和溫度基本無關(guān)的”里面有說。

Iled<50mA,Iled指的是光耦的電流,以PC817為例,發(fā)光管最大電流為50mA。

那么I分壓電阻電流>100*Iref呢?


開關(guān)電源:關(guān)于TL431電路的電阻取值


一般我們輸出電壓是由分壓比決定的,就是R1/Rlower,輸出電壓的計算公式是Vout=2.5V*(1+R1/RLower),可以看出,這是將Iref忽略掉了。要想能忽略掉Iref,那么就需要Iref<100*Ilower。

首先,看Rlower的大小


根據(jù)ILow>100*Iref,一般普通Iref為2uA,因此Ilow>0.2mA。Rlower一頭接GND,另外一頭是Vref電壓,為2.5V,所以Rlower兩端電壓是2.5V,電流是I=2.5V/Rlower>0.2mA,所以Rlower<12.5K。

不過我們需要知道,Rlower越小,那么電流也就越大,功耗越高,很多產(chǎn)品都對靜態(tài)功耗有要求,因此Rlower需要盡量選大一點的阻值,所以常規(guī)都是10K左右的阻值。如果追求極致的功耗,希望進一步減小偏置電路的功耗,也可以選擇靜態(tài)電流小的TL431,比如我看到TI有Iref=0.03uA的低靜態(tài)電流ATL431。

其次,R1的取值


選定Rlower后,根據(jù)目標輸出電壓Vout,有公式,Vout=2.5V*(1+R1/RLower),就可以計算R1的值了。

Rbias的取值


Rbias的取值是根據(jù)條件Ika>1mA來的,偏置電阻Rbias的目的是為了給TL431足夠的靜態(tài)電流Ika,Ika=Iled+Irbias(注:Zc這個網(wǎng)絡(luò)里面是有電容隔直的,因此靜態(tài)電流為0,不用計算該分支的電流),Iled是動態(tài)變化的,可能會很小,因此我們只需要保證Rbias的電流Irbias>1mA足夠大,那么就可以保障Ika>1mA。

當光耦的發(fā)光二極管導通時,其導通壓降一般在1V~1.2V左右(以下圖PC817為例)。


開關(guān)電源:關(guān)于TL431電路的電阻取值


發(fā)光二極管導通壓降就是Rbias的壓降,因此,Rbias兩端電壓范圍也是1V~1.2V。所以Rbias的最小電流是:Irbias=1V/Rbias。

由前面知道,這個電流需要滿足Irbias=1V/Rbias>1mA,因此Rbias>1K。雖說我這里寫的是大于號,不是大于等于。不過一般取1K也就夠了,因為首先LED的導通壓降一般實際是要大于1V的,另外靜態(tài)電流1mA本身也是有裕量的,可能因為這兩個原因,我們常見的Rbias也就是1K。

Rled的取值


Rled的取值是根據(jù)Ika<100mA,Iled<50mA可以得到Rled的最小值。

由圖可知,TL431的電流等于Rled的電流,即Ika=Irled。下公式中,Vf為光耦發(fā)光管的壓降

Ika=( Vout-Vf-Vka)/Rled

在任何情況下,我們都不能讓流過TL431的電流超過100mA,否則可能就燒壞了。TL431導通時,兩端電壓Vka>2.5V,Vf為1V~1.2V。

同時,光耦的LED發(fā)光管電流也有上限,以PC817為例,最大允許電流為50mA。當光耦電流為50mA時,顯然TL431沒有超過100mA,所以最終我們保證Led的電流不超過50mA即可。

當Vka=2.5V,Vled=1V時,有最大的Ika,此時Ika(max)=(Vout-3.5V)/Rled<50mA(忽略1mA左右Rbias電流)。假如Vout=12V,得到Rled>170,此電阻值即為Rled的最小值。

那么Rled的最大值如何求呢?


在Led流過最大電流的時候,光耦的電流也能達到最大Ic(max),這個時候光耦要能夠飽和導通,即Vce<0.3V。這是因為,如果我TL431已經(jīng)將LED調(diào)到最大電流了,結(jié)果初級側(cè)還無法將占空比調(diào)到目標值,那么也就失效了。光耦ce的電流與發(fā)光管的電流Iled成正比,所以發(fā)光管的電流Iled必須要足夠大,滿足:

IRled(max)-IRbias>Ice(max)/CTLmin-----(1)

下面就來求Iled(max),IRbias,Ice(max)

IRled(max):

易知,在TL431的Vka=2.5V時,電阻Rled有最大的電流,表達式為:

IRled(max)=(Vout-Vfmax-2.5V)/Rled-----(2)

Vf為光耦發(fā)光管的導通電壓,范圍為1~1.2V左右

Ice (max):

Ice(max)=(Vdd-Vcesat)/Rpullup------(3)

其中Vcesat為飽和壓降。

IRbias:

IRbias=Vfmax/Rbias------(4)

Vf為光耦發(fā)光管的導通電壓,范圍為1~1.2V左右

根據(jù)上面的公式1~4,得到Rled的最大值為:


開關(guān)電源:關(guān)于TL431電路的電阻取值


當Vout=12V,Vfmax=1.2V,Vdd=5V,Rpullup=4.99K,CTLmin=1,Vce(sat)=0.3V時,可求得:

Rled<3.88KΩ


開關(guān)電源:關(guān)于TL431電路的電阻取值


至此,我們已經(jīng)求得了Rled的最大值和最小值,即:170Ω<rled<3.88k。< p="" style="padding: 0px; margin: 0px;">

相關(guān)電阻是不是取值在這之間就行呢?

當然,是不行的,以上只是考慮了最基本的條件。要知道,這些電阻值還跟功耗相關(guān),如果電阻取值過小,那么功耗可能會高。

另外,從上一節(jié)“TL431及光耦傳遞函數(shù)的推導”可知,R1,Rbias,RLED,Rpullup還跟環(huán)路的傳遞相關(guān)。這些電阻的不同的取值,也會影響整個系統(tǒng)的運行。以上電阻的取值范圍,只能說是系統(tǒng)工作的必要條件,但不是充分條件。

小結(jié)


以上就是本次的內(nèi)容,大致說了下幾個電阻的取值范圍來源,不過需要注意,就TL431和光耦的電路,也有幾種不同的結(jié)構(gòu)。

比如有的Rbias是直接拉到Vout,并不是跨接到光耦的LED兩端,也有使用穩(wěn)壓管提供偏置的。不同的電路,自然有各自的優(yōu)劣勢,電阻計算公式也有所差異,不過如果理解了計算過程,應該都不是問題。



免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。



推薦閱讀:

安森美將在2022年德國慕尼黑電子展(Electronica)展示多種創(chuàng)新技術(shù)

傳感器在物聯(lián)網(wǎng)產(chǎn)業(yè)中的作用

鎖相環(huán)技術(shù)解析(上)

運算放大電路振鈴產(chǎn)生的原因及解決方法

還沒使用SiC FET?快來看看本文,秒懂SiC FET性能和優(yōu)勢!

國民技術(shù)匯聚11大主題與2款新品添彩ELEXCON 2022





特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉