中心議題:
- pwm變頻器的傳導(dǎo)干擾機(jī)理
- pwm變頻器傳導(dǎo)干擾的抑制措施
解決方案:
- 基于減小干擾源發(fā)射強(qiáng)度的emi抑制技術(shù)
- 基于切斷傳導(dǎo)傳播途徑的emi抑制方法
1 引言
隨著現(xiàn)代控制理論、電力電子技術(shù)、計算機(jī)控制技術(shù)和傳感器技術(shù)的發(fā)展,整個拖動領(lǐng)域正在進(jìn)行一場革命,交流電機(jī)的調(diào)速理論取得了突破性的進(jìn)展,交流傳動取代直流傳動已成為不可逆轉(zhuǎn)的趨勢。變頻器以其節(jié)能顯著、過載能力強(qiáng)、調(diào)速精度高、響應(yīng)速度快、保護(hù)功能完善、使用和維護(hù)方便等優(yōu)點(diǎn)在交流傳動領(lǐng)域的應(yīng)用將越來越廣泛。
變頻器是把工頻電源(50Hz或60Hz)變換成各種頻率的交流電源,以實(shí)現(xiàn)電機(jī)的變速運(yùn)行的設(shè)備,其中控制電路完成對主電路的控制,整流電路將交流電變換成直流電,直流中間電路對整流電路的輸出進(jìn)行平滑濾波,逆變電路將直流電再逆成交流電。對于如矢量控制變頻器這種需要大量運(yùn)算的變頻器來說,有時還需要一個進(jìn)行轉(zhuǎn)矩計算的CPU以及一些相應(yīng)的電路。變頻調(diào)速是通過改變電機(jī)定子繞組供電的頻率來達(dá)到調(diào)速的目的。在現(xiàn)代工業(yè)中,變頻器的使用越來越廣泛。目前幾乎所有變頻器都采用pwm控制技術(shù)。
目前,國內(nèi)外對電磁兼容問題非常重視。pwm變頻電機(jī)驅(qū)動系統(tǒng)所產(chǎn)生的電磁干擾也越來越受到人們的重視。為了達(dá)到電磁兼容標(biāo)準(zhǔn)的要求,正確的設(shè)計、合理的運(yùn)用抑制手段,使系統(tǒng)emi發(fā)射強(qiáng)度減小到emc標(biāo)準(zhǔn)限值以下,使電氣設(shè)備和系統(tǒng)實(shí)現(xiàn)電磁兼容。
2 pwm變頻器的傳導(dǎo)干擾機(jī)理
所謂傳導(dǎo)耦合是指電磁噪聲的能量在電路中以電壓或電流的形式,通過金屬導(dǎo)線或其他元器件耦合至被騷擾設(shè)備。傳導(dǎo)耦合又可以分為直接傳導(dǎo)耦合和公共阻抗傳導(dǎo)耦合。直接傳導(dǎo)耦合是指噪聲直接通過導(dǎo)線、金屬體、電阻、電容、電感和變壓器等實(shí)際元器件耦合到被騷擾設(shè)備。公共阻抗傳導(dǎo)耦合是指噪聲通過印制板電路和機(jī)殼接地線、設(shè)備的公共安全接地線以及接地網(wǎng)絡(luò)中的共地阻抗產(chǎn)生公共的地阻抗耦合;噪聲通過交流供電電源及直流供電電源的公共電源阻抗時,產(chǎn)生公共電源阻抗耦合。
功率開關(guān)器件的開關(guān)運(yùn)行狀態(tài)引起系統(tǒng)中各組件間復(fù)雜的相互耦合作用就會形成傳導(dǎo)干擾。傳導(dǎo)干擾考慮的最高頻率為30mhz,在真空中相應(yīng)的電磁波波長λ為10m,因而對于尺寸小于λ/2π的電力電子裝置來講,屬于近場范圍,可用集總參數(shù)電路進(jìn)行電磁干擾分析。可以根據(jù)傳導(dǎo)干擾傳播耦合通道的不同將系統(tǒng)輸入/輸出導(dǎo)線上的騷擾區(qū)分為共模干擾和差模干擾兩部分,一般認(rèn)為共模干擾主要是由于系統(tǒng)變流器中的功率半導(dǎo)體開關(guān)器件開關(guān)動作引起的dv/dt經(jīng)系統(tǒng)對地雜散電容耦合而傳播,一個極的電壓變化都會通過容性耦合到另一個極產(chǎn)生位移電流。通過寄生電容產(chǎn)生的電流并不需要直接的電氣連接,甚至可以沒有地。其大小可以表示為:i=cdu/dt ,式中c為電池干擾源和敏感設(shè)備之間的等效耦合電容。
差模干擾則主要是由于功率半導(dǎo)體開關(guān)器件開關(guān)引起的di/dt經(jīng)輸入輸出線間的導(dǎo)體傳播。當(dāng)然,這些只是傳導(dǎo)干擾產(chǎn)生的最本質(zhì)原因,而不同的電機(jī)系統(tǒng)其傳導(dǎo)干擾的具體成因不同,另外,共模干擾和差干騷擾是可以相互轉(zhuǎn)化的,并不是絕對分開的。比如圖1所示為共模電流傳輸通道的不平衡造成非本質(zhì)差模噪聲的電路圖。
圖1 非本質(zhì)差模噪聲產(chǎn)生機(jī)理
如圖2為pwm變頻驅(qū)動電機(jī)系統(tǒng)的電磁干擾電流流通路徑圖,包括共模干擾和差模干擾。在pwm變頻器中,為保證開關(guān)管工作時不會因過熱而失效,都要對其安裝散熱器,并且為防止短路,開關(guān)管的金屬外殼與散熱器之間是通過導(dǎo)熱絕緣介質(zhì)相隔離的,同時散熱器又是通過機(jī)箱接地的,于是,在變頻器與散熱器之間就形成了一個較大的寄生電容。當(dāng)逆變器正常工作時,隨著每相橋臂上、下開關(guān)管的輪流開通,橋臂中點(diǎn)電位會隨之發(fā)生準(zhǔn)階躍變化。如果從emi角度看該現(xiàn)象,那么三個橋臂所輸出的電壓就是三個emi干擾源,而且每個開關(guān)動作時都會對功率開關(guān)器件與散熱片之間寄生電容進(jìn)行充、放電,形成共模emi電流。
圖2 pwm變頻驅(qū)動電機(jī)系統(tǒng)的電磁干擾電流流通路徑圖[page]
3 pwm變頻器傳導(dǎo)干擾的抑制措施
由于電磁干擾產(chǎn)生必須具備三要素:電磁干擾源、電磁干擾傳播途徑和敏感設(shè)備,所以對于抑制pwm變頻驅(qū)動電機(jī)系統(tǒng)的傳導(dǎo)干擾也必須從三要素入手,即降低干擾源的強(qiáng)度、切斷傳播途徑和提高敏感設(shè)備的抗擾度。
3.1 基于減小干擾源發(fā)射強(qiáng)度的emi抑制技術(shù)
從降低干擾源的強(qiáng)度來看,歸納起來有三種具有代表性的方法:改變電路拓?fù)?、改進(jìn)控制策略和優(yōu)化驅(qū)動電路。
(1)改變電路拓?fù)?br />
改進(jìn)電路拓?fù)涞乃悸分饕峭ㄟ^對稱結(jié)構(gòu)來消除變換器輸出的共模電壓,并且由于開關(guān)器件上電壓變化率減半而使得裝置輸入側(cè)傳導(dǎo)干擾發(fā)射水平降低。以a.l.julian為首的學(xué)者根據(jù)“電路平衡”原理提出了一種用于消除三相功率變換器輸出共模電壓的三相四橋臂方案[9-11],其實(shí)驗(yàn)電路見圖3所示。該方法基本思想是采用一個外加“輔助相”使三相系統(tǒng)電路的對地電位對稱,并通過調(diào)整開關(guān)順序,使四橋臂輸出相電壓之和盡可能為零,實(shí)現(xiàn)共模電壓完全為零。與傳統(tǒng)三橋臂功率變換器相比,它的共模emi可以減小約50%。
圖3 帶二階濾波器的三相四橋臂功率變換器
m.d.manjrekar和a.rao等學(xué)者提出了一種通過添加輔助零狀態(tài)開關(guān),以消除因零開關(guān)狀態(tài)而產(chǎn)生共模電壓的方案,電路結(jié)構(gòu)見圖4所示。這種輔助零狀態(tài)合成器方法在經(jīng)濟(jì)方面很有吸引力,并且還可以使消除感應(yīng)電機(jī)側(cè)共模電壓。
圖4 輔助零狀態(tài)合成器結(jié)構(gòu)圖
與傳統(tǒng)的功率變換相比,盡管三相四橋臂和輔助零狀態(tài)合成器這兩種方法都能夠消除或降低系統(tǒng)的共模電壓,但它們所采用的調(diào)制策略都會使系統(tǒng)電壓利用率下降。為此,haoran zhang等學(xué)者提出了一種用于消除電機(jī)共模電壓和軸電流的雙橋功率變換器,拓?fù)浣Y(jié)構(gòu)見圖5所示。它是通過控制雙橋功率變換器產(chǎn)生標(biāo)準(zhǔn)的三相雙繞組感應(yīng)電動機(jī)平衡激勵,并通過平衡激勵(磁系統(tǒng))實(shí)現(xiàn)抵消共模電壓,達(dá)到消除軸電壓、軸電流及充分減小漏電流、emi發(fā)射強(qiáng)度的目的。
圖5 雙功率變換器驅(qū)動電路
為了消除pwm電機(jī)驅(qū)動系統(tǒng)共模電流,a.consoli等學(xué)者基于共模電壓補(bǔ)償技術(shù),提出了一種應(yīng)用于由兩個或多個功率變換器組成的多驅(qū)動系統(tǒng)公共直流母線共模電流消除技術(shù),拓?fù)浣Y(jié)構(gòu)見圖6所示。該方法是在兩個功率變換器做適當(dāng)連接的基礎(chǔ)上,通過控制兩個變換器狀態(tài)序列而使共模電壓同步變化的新pwm調(diào)制策略。
圖6 公共直流母線多電動機(jī)驅(qū)動共模電壓抑制系統(tǒng)[page]
(2)改進(jìn)控制策略
由于兩電平pwm調(diào)制策略將不可避免的使功率變換器輸出含有共模電壓,為此一些學(xué)者基于改進(jìn)逆變器控制方式或策略,提出了一些可以消除或減小共模電壓的新調(diào)制策略。韓國學(xué)者h(yuǎn)yeoun-dong lee對全控型三相整流/逆變器的空間矢量調(diào)制方式進(jìn)行了改動,它是依據(jù)非零矢量位置的移動會減小系統(tǒng)輸出共模電壓脈沖數(shù)量和作用時間這一原理,實(shí)現(xiàn)共模電壓的減小。另外該學(xué)者還提出了通過檢測整流器濾波電容鉗位中點(diǎn)電位的過零點(diǎn)極性,并選用兩個不同零矢量的方法。該方法可以將功率變換器輸出的共模電壓降低到傳統(tǒng)svpwm方式的三分之二;再有m.zigliotto等學(xué)者提出了以隨機(jī)開關(guān)頻率調(diào)制方式實(shí)現(xiàn)電磁干擾能量在頻域范圍內(nèi)分布平均化的抑制技術(shù)。
(3)優(yōu)化驅(qū)動電路
由于pwm電機(jī)驅(qū)動系統(tǒng)產(chǎn)生傳導(dǎo)emi的主要原因是功率半導(dǎo)體器件高頻開關(guān)動作所引起的dv/dt和di/dt過大,并且它們的大小還直接影響著系統(tǒng)emi的發(fā)射強(qiáng)度,而且對于常用的開關(guān)器件,其開關(guān)瞬間dv/dt和di/dt的大小受門極驅(qū)動脈沖波形和門極雜散電容的影響,因此,如果單純從減小系統(tǒng)emi發(fā)射強(qiáng)度的角度考慮,通過選擇適當(dāng)?shù)碾娐吠負(fù)浣Y(jié)構(gòu)和控制策略是可以減小dv/dt和di/dt,實(shí)現(xiàn)降低系統(tǒng)emi發(fā)射強(qiáng)度。vinod john等學(xué)者根據(jù)igbt的結(jié)構(gòu)特點(diǎn)、開關(guān)特性及其所具有的彌勒效應(yīng)提出了一種三級驅(qū)動的思想,并設(shè)計出了相應(yīng)的電路。它既能應(yīng)用于分立器件,也能應(yīng)用于igbt模塊,而且還適用于軟開關(guān)和硬開關(guān)技術(shù);另外一種減小dv/dt和di/dt的方法就是增加緩沖吸收電路。該方法在一定程度上減小了dv/dt和di/dt,對系統(tǒng)emi具有改善作用,但事實(shí)上它只是消除了器件開關(guān)時的振蕩現(xiàn)象,效果不是很明顯。
3.2 基于切斷傳導(dǎo)傳播途徑的emi抑制方法
盡管單純從emc角度出發(fā),降低干擾源對外發(fā)射電磁干擾強(qiáng)度是能夠減小系統(tǒng)emi,但會受到開關(guān)損耗增大、抑制幅度有限、控制策略繁雜及電壓利用率降低等不利因素的限制。為此各國學(xué)者相繼提出了一些用于阻斷emi傳播途徑的emi濾波器結(jié)構(gòu),并且實(shí)驗(yàn)表明經(jīng)過正確設(shè)計的濾波器,能夠使系統(tǒng)emi發(fā)射強(qiáng)度減小到emc標(biāo)準(zhǔn)限值以下,這是電氣設(shè)備和系統(tǒng)實(shí)現(xiàn)電磁兼容的重要手段。同諧波濾波器一樣,emi濾波器也可以被劃分為無源emi濾波器和有源emi濾波器兩種。
(1)有源emi濾波器
有源濾波器是通過有源電路來消除emi噪聲能量。有源濾波器的具體工作原理是通過檢測環(huán)節(jié)檢測到emi電流或電壓,然后將其反向回饋給系統(tǒng),以此來抵消系統(tǒng)所產(chǎn)生的emi電流或電壓,達(dá)到消除emi的目的。
目前比較典型的用于消除共模電流的有源濾波器如圖7所示。它由小型共模電流變壓器和一對互補(bǔ)的高頻晶體管組成,逆變器開關(guān)動作時,高頻漏電流通過電機(jī)繞組和機(jī)座間的寄生電容經(jīng)地線回到電源側(cè),共模電流變壓器將共模電流isl 檢測出來,經(jīng)互補(bǔ)晶體管放大產(chǎn)生補(bǔ)償電流il′,如果變壓器變比與晶體管放大倍數(shù)乘積足夠大,就可消除漏電流il,完全抑制了流入到電源側(cè)的共模電流isl。
圖7 用于消除共模電流的有源濾波器
傳統(tǒng)的用于消除共模電壓的有源濾波器如圖8所示,文獻(xiàn)將其稱為有源共模噪聲消除器,acc連接在逆變器的輸出端和三根電纜之間,由共模電壓傳感器、補(bǔ)償電路和共模變壓器組成,acc在逆變器輸出端疊加一個補(bǔ)償電壓,該補(bǔ)償電壓與pwm逆變器產(chǎn)生的共模電壓極性相反、幅值相等,從而使施加在負(fù)載上的共模電壓被完全消除,也就減小了共模電流和傳導(dǎo)emi。
圖8 用于消除共模電壓的有源濾波器[page]
(2)無源emi濾波
無源emi濾波通常是由電阻、電感、電容等元器件組成,目前最為常見的是電源emi濾波器,其結(jié)構(gòu)見圖9所示。由于它只能抑制emi噪聲,而對pwm電機(jī)驅(qū)動系統(tǒng)的其它負(fù)面效應(yīng)無抑制作用,為此各國學(xué)者又相繼提出了一些兼顧其它功能的無源emi濾波器。如a.v.jouanne等學(xué)者所提出的共模變壓器方案,結(jié)構(gòu)如圖10所示。該方案是從消除電動機(jī)側(cè)共模emi電流的角度進(jìn)行設(shè)計的,它是在共模扼流圈的基礎(chǔ)上,再在同一磁芯上纏繞一個終端連接阻尼電阻的第四繞組,以此抑制共模emi電流的振蕩,達(dá)到消除電機(jī)端共模電壓帶來的其它負(fù)面效應(yīng)。
圖9 典型三相emi電源濾波器
圖10 共模變壓器方案
d.a.rendusara等學(xué)者提出了改進(jìn)型二階rlc低通功率變換器輸出濾波器,結(jié)構(gòu)見圖11所示。它與原型濾波器相比,其重要區(qū)別就是通過導(dǎo)線把以星型形式連接的阻容電路中性點(diǎn)“n`”與變換器直流母線鉗位中點(diǎn)“m”接在一起。該濾波器的優(yōu)點(diǎn)是可以同時減小電機(jī)側(cè)的傳導(dǎo)差模emi電流和傳導(dǎo)共模emi電流,并且如果參數(shù)設(shè)計合理,還可以使rf、lf和cf的值很小,而將其安裝在功率變換器機(jī)殼內(nèi)。它可以使電機(jī)端的過電壓、對地共模emi電流以及軸電壓顯著減小,并且該濾波器的尺寸、損耗以及成本都較低。
圖11 改進(jìn)型二階無源低通濾波器
4 結(jié)束語
隨著國際標(biāo)準(zhǔn)的強(qiáng)制執(zhí)行,再加上科研過程中不斷出現(xiàn)新的電磁干擾問題,使得變頻器的電磁兼容問題成為亟待解決的問題。本文從分析pwm變頻器傳導(dǎo)干擾機(jī)理入手,總結(jié)了目前傳導(dǎo)干擾的抑制措施,具有參考意義??偟膩碚f,變頻器的電磁兼容設(shè)計還處于初期階段,還需要我們付出長期不懈的努力。相信在未來變頻器的電磁兼容設(shè)計將會有更好的發(fā)展。