你的位置:首頁 > 電源管理 > 正文

電源管理的原理和方法

發(fā)布時間:2012-02-08 來源:ADI

中心議題:

  • 電源管理的原理和方法
  • 基本監(jiān)控
  • 基本時序控制
  • 利用IC進行時序控制

解決方案:

  • 集成的電源系統(tǒng)管理
  • 集中式監(jiān)測和時序控制
  • 電源調(diào)整


電源設(shè)計工程師通常采用靈活的電源監(jiān)控、時序控制和調(diào)節(jié)電路對系統(tǒng)進行管理。本文主要討論電源管理的原理和方法。

多年來,隨著系統(tǒng)內(nèi)電源數(shù)量的增多,為了確保其安全、經(jīng)濟、持續(xù)和正常的工作,特別是在使用微處理器時,對電源軌進行監(jiān)測和控制變得非常重要。確定電壓軌是超過閾值還是處于工作范圍內(nèi),以及該電壓相對于其它電壓軌是否按照正確的時序上電或斷電,這些對于系統(tǒng)運行的可靠性和安全性來說都是至關(guān)重要的。

對于這個問題,有許多解決方案。例如,利用由精密電阻分壓器、比較器和基準電壓源組成的簡單電路,就能夠檢測電壓軌上的電壓是高于還是低于規(guī)定的電平。在復(fù)位發(fā)生器中,如ADM809,將這類器件與延遲器件結(jié)合在一起,能夠使微處理器、ASIC(專用集成電路)以及DSP(數(shù)字信號處理器)等在上電時便處于復(fù)位狀態(tài),這種類型的監(jiān)控適合于多種應(yīng)用。

當需要監(jiān)控多路電壓軌時,會需要更多的不只是用于簡單監(jiān)控電壓的監(jiān)控IC。例如,考慮一個常見的電源時序控制需求:FPGA(現(xiàn)場可編程門陣列)制造商規(guī)定,在向器件提供5V I/O(輸入/輸出)電壓之前,必須先施加3.3V的內(nèi)核電壓,并持續(xù)至少20ms,以避免器件上電時受到損壞。對于系統(tǒng)的可靠性來說,滿足這樣的時序要求就像要保證器件在規(guī)定的電源電壓和溫度范圍內(nèi)工作一樣至關(guān)重要。

隨著應(yīng)用的發(fā)展,電源軌數(shù)量也在顯著增加。一些復(fù)雜、昂貴的系統(tǒng),如LAN(局域網(wǎng))交換機和蜂窩電話基站,線路卡通常會包含10路或更多電壓軌;即使是成本敏感的消費類系統(tǒng),如等離子電視,也可能具有多達15路的獨立電壓軌,其中許多電壓軌都需要進行監(jiān)控和時序控制。

目前,許多高性能的IC都需要多路電壓。例如,提供獨立的內(nèi)核電壓和I/O電壓已成為許多器件的標準。在高端系統(tǒng)中,每個DSP器件會需要多達四個獨立的電源。而在更多情況下,單一系統(tǒng)中可能存在著大量的多電源器件,包括FPGA、ASIC、DSP、微處理器和微控制器(以及模擬器件)。

系統(tǒng)中有許多器件都可以采用標準電源電壓供電(如3.3V),而另一些器件可能需要專用電壓。此外,某些標準電壓可能還需要用到很多不同的地方。例如,有時會需要像3.3 VANALOG和3.3 VDIGITAL這樣獨立的模擬電源和數(shù)字電源。為了提高效率(如存儲器電源軌的電流會達到數(shù)百安培)或滿足時序要求(個別器件在不同時間需要3.3 VA以及3.3 VB),可能需要多次產(chǎn)生相同的電壓。所有這些因素都導(dǎo)致電源數(shù)量的增加。

電壓監(jiān)控和時序控制有時會變得極為復(fù)雜,特別是當一個系統(tǒng)必須設(shè)計為能夠支持上電時序控制和斷電時序控制,并能夠在工作期間的不同時間點上對不同電源軌上的所有可能故障狀況均產(chǎn)生多種響應(yīng)時。中心電源管理控制器是解決這個難題的最佳方案。

隨著電源電壓數(shù)量的增加,發(fā)生故障的幾率也隨之增加。其風(fēng)險與電源數(shù)量、器件數(shù)量和系統(tǒng)復(fù)雜程度成正比,外部因素也會增加風(fēng)險。例如,如果在初始設(shè)計階段沒有完整地定義出主ASIC的特性,那么電源設(shè)計工程師必須用硬連線實現(xiàn)電壓監(jiān)控閾值和時序控制,但這些都可能會隨著ASIC技術(shù)指標的改變而發(fā)生變化。如果需求發(fā)生改變,那么PCB(印制電路板)必須進行修改,這顯然會影響開發(fā)進度和成本。另外,某些特定器件的電源電壓技術(shù)指標可能會在開發(fā)過程中有所改變。在這種情況下,對于任何一個中心電源系統(tǒng)管理器來說,易于調(diào)整電源的方法將會是非常有用的。事實上,對這種系統(tǒng)的電壓軌進行監(jiān)控、時序控制和調(diào)節(jié)時,靈活性是非常重要的。

對選定的故障保護機制和時序控制的魯棒性進行評估是一件相當龐大的工作,因此,能夠簡化這一過程的器件將加速電路板的評估,并縮短上市時間。不論是在工作現(xiàn)場,還是從早期PCB開發(fā)到原型評估的各個設(shè)計階段,故障記錄以及數(shù)字化的電壓和溫度數(shù)據(jù)都是很有用的特性。

基本監(jiān)控

下圖1所示為利用ADCMP361監(jiān)控多路電壓軌的簡單方法,這是一款內(nèi)置基準電壓的雙極性輸出、±0.275%精度的比較器 。由于ADCMP361內(nèi)置400mV高精度基準電壓源,因此可以精確的監(jiān)控非常低的電壓,例如0.9V 的電壓軌。其中,每路電壓軌都使用獨立的電路。電阻分壓器將電壓軌按比例降低,并為每一路電源設(shè)置一個欠壓跳變點。所有的輸出被連接在一起,產(chǎn)生通用電源良好信號。 

圖1 基于比較器的欠壓檢測,提供通用電源良好輸出,可用于3路電源系統(tǒng)
由于采用更低電源電壓的新工藝的發(fā)展,加上遺留的I/O電壓要求,近年來復(fù)雜系統(tǒng)中電壓軌的數(shù)量大幅增加。當需要監(jiān)控多路電壓軌時,可以使用能分別監(jiān)控兩路或三路電壓軌的多電壓監(jiān)控器,如ADM13305以及ADM13307。ADM6710與ADM1184還可以監(jiān)控四路電壓軌。ADM6710可提供預(yù)調(diào)電壓閾值,ADM1184可提供4個高精度(±0.8%)的可調(diào)輸入信號,能夠利用外部電阻分壓器網(wǎng)絡(luò)設(shè)置跳變閾值。

表1 多電壓監(jiān)控器
更小的工藝尺寸正在推動內(nèi)核電壓向更低的方向發(fā)展。通常在大電流情況下,必須有效地提供低電壓,而且必須遵守嚴格的調(diào)節(jié)和瞬態(tài)指標。低壓時余量的不足可能會引起預(yù)想不到的器件行為。例如,如果電源電壓下降到電信ASIC的閾值以下,芯片的工作會出現(xiàn)異常,可能導(dǎo)致正在發(fā)送的信息被破壞或者數(shù)據(jù)丟失。隨著內(nèi)核電壓的下降,對高精度電壓監(jiān)控器的要求將更加苛刻,如圖2所示。

圖2 需要高精度監(jiān)控器
在這個例子中,1 V穩(wěn)壓電源實際的電壓范圍是0.97 V~1.03 V。微處理器可接受的核心電壓是1 V (±5%),即0.95 V~1.05 V。因此,欠壓監(jiān)控范圍為2%。而ADM13305、ADM13307與ADM1184的可調(diào)輸入在整個溫度范圍內(nèi)的精度高達±0.8%,電阻分壓器的精度為±0.1%,這使得欠壓電平監(jiān)控精度范圍能保持在2%以內(nèi)。

基本時序控制

圖3所示的是如何利用分立器件實現(xiàn)基本的時序控制,此處采用邏輯閾值而不是比較器。12V和5V電源軌是由其它電路產(chǎn)生的。為了確保系統(tǒng)能夠正確工作,必須引入一段時間延遲。這里是通過使用RC(電阻電容)電路來緩慢升高與5V電源串聯(lián)的N溝道FET的柵極電壓而實現(xiàn)的。所選用的RC值可確保FET在達到閾值電壓并導(dǎo)通之前能獲得足夠的延遲時間。3.3V和1.8V電源軌是由線性穩(wěn)壓器ADP120和ADP130產(chǎn)生的。這些電壓的上電時間也是利用RC來進行時序控制的。由于RC能驅(qū)動每個LDO的EN(使能)引腳,因此無需串聯(lián)FET。選定的RC值要確保在EN引腳上的電壓爬升到其閾值之前有足夠的延遲時間(t2,t3)。

這種簡單、低成本的電源時序控制方法只占用很少的電路板面積,因此可用于多種應(yīng)用。這種方法適合于成本是主要考慮因素、時序要求很簡單,且時序控制電路的精確性不是十分重要的系統(tǒng)。

但許多情況需要比RC延遲電路更高的精確性。此外,這種簡單的解決方案也不允許以結(jié)構(gòu)化的方法處理故障(例如,一個5V電源失效最終將影響到其它電源軌)。

圖3 四路電源系統(tǒng)的基本分立式時序控制
利用IC進行時序控制

市場上有各種各樣的電源時序控制器。有些器件能夠直接實現(xiàn)電源模塊的輸出,并提供多種輸出配置。有些器件內(nèi)置電荷泵電壓發(fā)生器,對于需要對更高電壓軌進行時序控制、卻又缺少高壓源(如12V電源軌)的低壓系統(tǒng)來說,這一點特別有用,能夠驅(qū)動N溝道FET的柵極。許多這類器件具有使能引腳,可以接受來自于按鈕開關(guān)或控制器的外部信號,以便在需要時重新啟動時序控制或關(guān)斷所控制的電壓軌。

圖4所示的是如何使用電源時序控制器 ADM6820和ADM1086精確且可靠地對系統(tǒng)中的電源軌進行時序控制。內(nèi)部比較器檢測電壓軌何時會超過精密的設(shè)定電平,經(jīng)過可編程的上電延遲之后,產(chǎn)生輸出,使線性穩(wěn)壓器ADP120和ADP130能按照期望的時序工作。閾值通過電阻比值來設(shè)定,延遲通過電容來設(shè)定。

圖4 使用監(jiān)控IC對四路電源系統(tǒng)進行時序控制
集成的電源系統(tǒng)管理

當今的復(fù)雜系統(tǒng)往往需要多達四路電壓,并需要對低壓內(nèi)核電壓進行更精確的監(jiān)控,還需要對電壓軌的上電與斷電時序進行監(jiān)控。這些低壓需要被精確監(jiān)控,然后以正確的時序上電和斷電,同時確保每個電壓軌之間正確的延時。例如,如果電源電壓下降到閾值以下或者打印機ASIC中的電源沒有正確的上電或斷電,那么器件的工作將會出現(xiàn)異常,可能導(dǎo)致數(shù)據(jù)丟失。

圖5 打印機應(yīng)用中的上電與斷電時序
ADM1186系列產(chǎn)品在整個溫度范圍內(nèi)提供±0.8%的電壓閾值監(jiān)控精度,這對低電壓軌的監(jiān)控至關(guān)重要。本文將在打印機應(yīng)用的實例中說明這種監(jiān)控,如圖5所示。ADM1186還利用數(shù)字內(nèi)核實現(xiàn)了上電和斷電(順序相反)的時序控制,無需軟件支持。對于ADM1186-1來說,多個器件可通過級聯(lián)來對8、12、16路乃至更多的電源進行上電和斷電時序控制。通過專用的電容可編程時序引腳設(shè)置,能夠更容易且更精確的控制電源之間的延時,無需在電源軌監(jiān)控引腳增加電容。利用這一靈活性,就可以獨立而精確的控制時序延時以及器件的故障響應(yīng)時間。除了時序延時,ADM1186還提供可編程消隱延時,使設(shè)計人員可為電源設(shè)置最大時限,在啟動后將電源電壓提升到欠壓閾值之上。

表2 四通道電壓監(jiān)控器與電源時序控制器
有些系統(tǒng)具有許多電源軌,采用這種使用大量IC,并利用電阻和電容來設(shè)置時序和閾值電平的分立解決方案會變得過于復(fù)雜、成本過高,且不能提供適當?shù)男阅堋?br />
具有八路電壓軌的系統(tǒng)會需要復(fù)雜的上電時序控制。每路電壓軌都要監(jiān)控,以免出現(xiàn)欠壓或過壓故障。發(fā)生故障時,根據(jù)故障機制,需要關(guān)斷所有電源電壓,或初始化電源關(guān)斷時序。此外,必須根據(jù)控制信號的狀態(tài)采取相應(yīng)措施,并根據(jù)電源的狀態(tài)產(chǎn)生標志位。如果使用分立器件和簡單的IC來實現(xiàn)如此復(fù)雜的電路,可能需要數(shù)以百計的器件,這將會占用很大的電路板空間,并耗費大量成本。

在具有四路或更多電源的系統(tǒng)中,使用集中式器件來管理電源比較可取。圖6所示的是采用這種方法的一個例子。

圖6 用于八路電源系統(tǒng)的集中式時序控制與監(jiān)控解決方案
集中式監(jiān)測和時序控制

ADM106x Super SequencerTM11系列產(chǎn)品使用比較器,但是有一些不同之處。每個輸入端都有兩個專用比較器,以實現(xiàn)欠壓和過壓檢測,這樣便可對DC/DC轉(zhuǎn)換器ADP1821和ADP2105以及LDO ADP1715所產(chǎn)生的電壓軌提供窗口監(jiān)控。在電源上電之前,欠壓故障是正常的狀態(tài),因此這個指示可用于時序控制。過壓狀態(tài)通常表示一種嚴重故障,如FET或電感器短路,必須立即采取行動。

通常,系統(tǒng)中包含的電源數(shù)量越多,系統(tǒng)就越復(fù)雜,因此精度限制也越嚴格。另外,在低壓狀態(tài)下,例如1.0V和0.9V,利用電阻來設(shè)定精確的閾值也變得很有挑戰(zhàn)性。雖然對于5V電源軌來說,可接受10%的容差,但對1V電源軌來說,這個容差是不能接受的。ADM1066在最壞情況下允許輸入檢測器比較器的閾值被設(shè)定在1%范圍內(nèi),而與電壓(低至0.6V)無關(guān),并可工作在該器件允許的整個溫度范圍內(nèi)。這可以增加每個比較器的內(nèi)部毛刺濾波和遲滯。其邏輯輸入可用于啟動上電時序控制、關(guān)閉所有電源軌,或執(zhí)行其它功能。

比較器的信息被送入功能強大和靈活的狀態(tài)機內(nèi)核,這些信息具有以下幾種用途。

時序控制:當最近的使能電源的輸出電壓進入到窗口中時,時間延遲被觸發(fā),以按照上電時序接通下一個電源軌??赡苄枰哂卸嘀厣想娕c斷電時序,或具有差別較大的上電與斷電時序的復(fù)雜時序控制。

超時:如果已經(jīng)使能的電源軌沒有按照預(yù)期上電,可以執(zhí)行一套適當?shù)膽?yīng)對措施(例如產(chǎn)生一個中斷信號或關(guān)閉系統(tǒng))。相比之下,純模擬的解決方案只會令系統(tǒng)簡單地掛在時序中的那一點上。

監(jiān)控:如果任一電源軌上的電壓超出了預(yù)設(shè)的窗口,可以根據(jù)發(fā)生故障的電源軌、故障類型和當前的工作模式,采取適當?shù)膽?yīng)對措施。含有五路以上電源的系統(tǒng)通常都相當昂貴,因此全面的故障保護是極為重要的。

即使系統(tǒng)中的最高電壓只有3V,仍然可以通過內(nèi)置電荷泵產(chǎn)生大約12V的柵極驅(qū)動電壓,從而允許輸出能夠直接驅(qū)動串聯(lián)的N溝道FET。其它額外的輸出能夠使能或關(guān)斷DC/DC轉(zhuǎn)換器或穩(wěn)壓器,使輸出內(nèi)部上拉至其中一個輸入電壓或內(nèi)置的穩(wěn)壓電壓。輸出也可以被指定為開漏輸出。輸出可以用作狀態(tài)信號,如電源良好或上電復(fù)位。如果需要的話,狀態(tài)LED可以直接由輸出來驅(qū)動。

電源調(diào)整

除了能夠監(jiān)控多路電壓軌并提供復(fù)雜的時序控制解決方案之外,ADM1066等集成電源管理器件還可以用于暫時或永久調(diào)整某些電壓軌電壓。通過調(diào)節(jié)器件上調(diào)整節(jié)點或反饋節(jié)點上的電壓,可以改變DC/DC轉(zhuǎn)換器或穩(wěn)壓器的電壓輸出。一般來說,通過介于輸出與地之間的電阻分壓器,來調(diào)整/反饋引腳上設(shè)置的標稱電壓,從而設(shè)置標稱輸出電壓。通過切換反饋回路中的額外電阻或控制可變電阻的簡單方案,可以改變調(diào)整/反饋電壓,進而調(diào)節(jié)輸出電壓。

ADM1066具有DAC(數(shù)模轉(zhuǎn)換器),可以直接控制調(diào)整/反饋節(jié)點。為了實現(xiàn)最大的效率,這些DAC不會在地與最大電壓間工作,而是會以標稱的調(diào)整/反饋電平為中心點,在一個相當窄的窗口中工作。衰減電阻器的阻值可決定電源模塊輸出的遞增變化和DAC的每個LSB變化。這種開環(huán)調(diào)節(jié)方式提供了提升容限或降低容限的標準,相當于那些利用參考電路中的數(shù)字電阻切換所獲得的結(jié)果,而且可以將輸出調(diào)節(jié)到類似的精度。

ADM1066還包含一個用來測量電源電壓的12bit ADC(模數(shù)轉(zhuǎn)換器),以實現(xiàn)閉環(huán)電源電壓調(diào)節(jié)方案。通過給定的DAC輸出設(shè)置,電源模塊的電壓輸出可由ADC采集轉(zhuǎn)換,并利用軟件與所設(shè)定的目標電壓進行比較。這樣,便可調(diào)整DAC來校準電壓輸出,使其盡可能接近目標電壓。這個閉環(huán)方案提供了一個非常精確的電源調(diào)節(jié)方法。使用閉環(huán)方法時,與外部電阻的精度無關(guān)。在圖6中,DC/DC4的輸出電壓便是利用其中一個內(nèi)置DAC來進行調(diào)整的。

這種電源調(diào)節(jié)方案有兩個主要應(yīng)用。首先是電源容限的概念,也就是說,當電源處于規(guī)定的設(shè)備電源電壓范圍邊界時,測試系統(tǒng)對電源做出的反應(yīng)。數(shù)據(jù)通信、電信、蜂窩電話基礎(chǔ)設(shè)施、服務(wù)器和存儲區(qū)域網(wǎng)絡(luò)設(shè)備等制造商在將其系統(tǒng)交付給終端客戶之前,必須進行嚴格的測試。系統(tǒng)中的所有電源電壓都應(yīng)該在一定的容差范圍內(nèi)工作(例如±5%、±10%)。通過確保正確運行所進行的測試,電源容限允許所有的內(nèi)置電源被調(diào)節(jié)到容差范圍的上限和下限。具有電源調(diào)節(jié)能力的集中式電源管理器件,可用于進行這種容限測試,同時使得只需完成一次測試所需的額外器件最少、PCB面積最小——在制造商的測試地點進行容限測試期間。

通常需要進行全范圍測試,也就是,在設(shè)備的整個工作電壓范圍和整個溫度范圍內(nèi)進行測試, ADM1062不僅集成了閉環(huán)電源容限電路,還集成了溫度檢測和回讀功能。

電源調(diào)節(jié)方案的第二個應(yīng)用是補償工作現(xiàn)場的系統(tǒng)電源波動。造成電源波動的原因有許多種,就短期而言,當溫度改變時,電壓的輕微變化是十分常見的;就長期來說,某些器件參數(shù)可能會隨產(chǎn)品的長期使用而產(chǎn)生輕微的漂移,這也可能導(dǎo)致電壓的漂移。ADC及DAC環(huán)路可被周期性地激活(例如每10 s、30 s或60 s),再加上軟件校準環(huán)路,就可以使電壓保持在其應(yīng)有的范圍內(nèi)。

靈活性

ADM1066具有內(nèi)置非易失性存儲器,在系統(tǒng)開發(fā)過程中,當時序控制與監(jiān)控需求不斷發(fā)展時,可以根據(jù)需要進行多次重新編程,這意味著硬件設(shè)計可以在產(chǎn)品原型設(shè)計的初期完成,而監(jiān)控和時序控制的優(yōu)化可以隨著項目的進展來進行。

數(shù)字溫度和電壓測量等功能可以簡化并加速評估過程;容限工具則允許在開發(fā)過程中對電源電壓進行調(diào)節(jié)。因此,當關(guān)鍵的ASIC、FPGA或處理器也正處在開發(fā)階段,且由于推出新版本的芯片,引起電源電壓電平或時序需求不斷變化,可以通過軟件14 GUI(圖形用戶界面)來完成簡單的調(diào)節(jié)。在幾分鐘內(nèi)對電源管理器件進行重新編程,將變化因素考慮進去,而無需對電路板上的器件進行物理級改變,也不會發(fā)生需要重新設(shè)計硬件等更糟的狀況。

表3 Super Sequencer器件
結(jié)論
電源軌數(shù)量的不斷增加和電源時序控制技術(shù)的興起以及更低電壓軌的發(fā)展趨勢,增加了許多類型的設(shè)備和系統(tǒng),從筆記本電腦、個人計算機、機頂盒、汽車系統(tǒng)到服務(wù)器與存儲設(shè)備、蜂窩電話基站以及因特網(wǎng)路由器與交換機系統(tǒng),對電源設(shè)計工程師的要求也隨之增加。隨著內(nèi)核電壓的不斷下降,為了確保魯棒性與高可靠的運行,對這些電壓進行高精度監(jiān)控的需求變得更加關(guān)鍵。更嚴格的測試程序、信息更新以及快速且簡單的編程能力也都受到關(guān)注,特別是中高擋系統(tǒng)。為了提升系統(tǒng)的魯棒性和可靠性,并加入這些至關(guān)重要的新特性,市面上已推出許多新的電源管理器,幫助用戶安全、有效地解決這些問題,同時減小電路板面積,并縮短產(chǎn)品上市時間。

要采購轉(zhuǎn)換器么,點這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉